首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《粉末冶金学》2013,56(4):193-200
Abstract

The influence of admixed zinc stéarate on the shrinkage of uniaxially pressed iron powder compacts has been studied. For pressing conditions which caused inhibition of compaction the removal of the stéarate during sintering produced an increase in shrinkage parallel to the pressing axis and in direct proportion to lubricant content. Additions of stearic acid (varying particle size), zinc stearate, lithium stearate, stearamide, and Cosmic 64 wax were used to investigate the influence of lubricant on mechanical properties of green and sintered iron powder compacts. Green strength was reduced relative to unlubricated material only by lubricants whose physical and chemical properties enabled them to produce and maintain extensive interparticle films during pressing. Vapour from the rapid initial decomposition of lubricants which reduced green strength could have a deleterious physical influence on the tensile strength of dewaxed or sintered Fe compacts. Decomposing lubricants also produced undesirable chemical effects. These arose from reactions between lubricant decomposition products and the matrix or by these products interfering with reactions between matrix and sintering atmosphere.  相似文献   

2.
none 《粉末冶金学》2013,56(1):33-38
Abstract

Metaliron powders of well controlled size and morphology were synthesised by thermal decomposition under hydrogen of precipitated ferrous oxalates. Green compacts were prepared by uniaxial pressing of metal powders at 290 MPa. The bending green strengths of compacts were measured.

The precipitation of β-FeC2O4.2H2O oxalate from ammonium oxalate gives rise to the formation of spherical particles by aggregation ofelongated grains. Thermal decomposition of this oxalate from 400 to 500°C under hydrogen permits metal iron particles with a rough surface to be obtained. Decomposition occurring above 500°C induces a smoothness of the particle surface. Metal particles synthesised at 500°C show both surface roughness and micrometer sized primary grains.This specific microstructure has allowed the highest value ofcompact green strength (31·7 MPa) to be obtained.

Acicular shaping of the β-FeC2O4.2H2O particles precipitated from oxalic acid involves, after decomposition, an increase in the surface roughness and shape irregularity of the metal particles, owing to an entanglement of the elementary grains. An exceptional value (about 60 MPa) for the metal compact green strength was thus obtained for this type of powder.  相似文献   

3.
《钢铁冶炼》2013,40(2):93-100
Abstract

The influence of the carbon concentration of directly reduced iron (DRI) powders on the compressibility and fracture strength of hot briquetted iron (HBI) has been studied. Industrially produced DRI, pure iron powder and Fe–C alloy powders (synthetic DRI) were used in the study. It was found that the mechanism of compaction could be attributed to pure yielding. The pressure required to attain a given density increased proportionally with the carbon content. The morphology and phases present in DRI powder had a significant influence on the compressibility. The fracture strength of the compacts increased with increasing carbon content of the DRI powder. These observations are discussed with reference to the current understanding of the mechanisms of compaction and fracture of compacted particulate materials.  相似文献   

4.
《粉末冶金学》2013,56(32):351-365
Abstract

Three grades of iron powder-an atomized steel powder, a sponge iron powder reduced from magnetite with carbon, and a powder reduced from mill scale with hydrogen were mixed with 3% of copper powder and pressed into compacts. The diametral dimensional changes of the compacts during sintering below and above the melting point of copper were measured, their microstructures examined, and both related to the characteristics of the powders, particularly their specific surface. During sintering below the melting point of copper, compacts of all three powders shrank. Micrographic examination showed that the copper is transported by solid-state diffusion along the surfacesand grain boundaries of the iron powder particles. During sintering above the melting point of copper, compacts of the atomized and the MH-100 sponge iron powders grew while those of the hydrogen reduced mill-scale powder shrank. This phenomenon is related to the different mode of penetration of liquid copper in the compacts from the three powders, observed in the microstructures of the compacts.  相似文献   

5.
《粉末冶金学》2013,56(35):107-123
Abstract

Three plain iron powders of different types (sponge-iron, atomized and electrolytic iron powder) were studied with respect to their sintering behaviour and to the influence of manufacturing parameters—i.e., compacting pressure, sintering temperature, and sintering atmosphere—on the microstructure and the properties of sintered compacts. The changes of length, electric conductivity, and strength during sintering are explained in physical and chemical terms. Technical sintering diagrams are presented. The influence of sintering atmospheres on the mechanical properties of sintered compacts is shown for the three types of powder. The correlation between pore structure and strength is discussed; analytical relationships are developed which are in agreement with the experimental results.  相似文献   

6.
《粉末冶金学》2013,56(2):80-85
Abstract

The dependence of green strength on green density and on compacting pressure was investigated for the bidirectional die pressed and isostatically pressed Cu powder compacts. The breaking strength of the pressed Cu compact was found to increase with green density and also with compacting pressure. The green strength seemed to be directly proportional to the contact area between powder particles. A theoretical equation for the relationship between green density and contact area was derived from a geometrical consideration, and agreed well with experimental findings. PM/0272  相似文献   

7.
Mechanisms of strength for green compacts made from powders of iron, nickel and its alloys, copper, tin, and zinc are analyzed. The strength of green compacts prepared from metal powders of medium fineness with a relative bulk density (RBD) from 0.119 to 0.568 by two-way compaction in rigid dies with homologous temperatures from 0.15 to 0.59 (pressure from 200 to 800 MPa, powder deformation rate 10?2–10?3 m/sec) is studied. Compact strength is determined by diametric compression of cylindrical compacts. The dependence of strength on compact porosity is studied by the Bal’shin equation. The possibility is demonstrated of using this relationship in order to describe hot compaction and formally describe cold compaction of powders with RBD up to 0.40. The effect of homologous temperature and powder RBD on compact strength is determined. The homologous temperature for transition from warm to hot compaction and the effect of compact density (degree of deformation) on this temperature is studied. It is shown that linear approximation is possible for the dependence of compact strength on powder RBD according to the equation σ f.c = 87–217?RBD.  相似文献   

8.
《粉末冶金学》2013,56(4):365-370
Abstract

It is important that the green strength properties of powder compacts be accurately determined if advanced manufacturing techniques, such as green machining, are to be exploited successfully. In this study, the green strength of Distaloy AE Densmix, a powder mix designed for such applications, was measured using several test methods. Fracture statistics were correlated with compact density and test method employed, and the Weibull modulus calculated for each case. It was found that Weibull analysis accurately predicted the green strength dependence on the test configuration utilised.  相似文献   

9.
《粉末冶金学》2013,56(32):327-350
Abstract

A wide range of copper and tin powder additions to iron powder sintered compacts hasbeen studied. From mechanical-property tests it has been shown that when using sinteririg temperatures of 900–1100°C in nitrogen/10% hydrogen atmospheres there is an optimum copper: tin ratio of 15:2. The mechanical properties obtained from compacts pressed from iron mixed with 4% copper+tin in this ratio and sintered at 900°C were similar to those obtained from iron ?l0% copper powder compacts sintered at 1100°C. Moreover, the iron-copper-tin components showed improved dimensional accuracy.

In a further series of experiments, it was shown that tin additions to iron-copper alloy compacts increased the solubility of iron in the liquid phase at the sintering temperature and simultaneously decreased the rate of diffusion of copper into the iron particles. At the same time, tin improved the wettability of the liquid, reducing its surface tension and allowing it to disperse more completely throughout the matrix. The mechanical properties of compacts containing larger amounts of tin were decreased by the presence of brittle compounds, although the sintering rate was increased. It is concluded that the optimum properties of iron-copper-tin compacts are obtained by making correct additions of copper and tin to the iron powder and giving careful consideration to the sintering atmosphere.  相似文献   

10.
《粉末冶金学》2013,56(19):13-32
Abstract

The effects of compacting pressure and of sintering temperature and time on the properties of porous sintered nickel compacts have been studied, using three carbonyl and two reduced nickel powders. For all five powders, the density of the green compacts and the porosity of the sintered compacts were linearly related to the log compacting pressure. Similar relationships with pressure were observed for strength and electrical conductivity.

Photomicrographs of sections through the sintered compacts made from the reduced nickel powders show that there are pores in two different size ranges, originating from the porosity between the original powder particles and the pores within the particles. It is concluded that sintered compacts from all five powders containing 40–50% porosity have adequate strength and conductivity for use in fuel-cell electrodes.  相似文献   

11.
Abstract

Plastic flow surfaces for metal and metal/composite powder compacts with variable cohesive strength are derived using the Beltrami total strain energy criterion, modified to permit asymmetric yielding. The present theory thus includes the domains of both soil mechanics and powder metallurgy, covering both granular and porous microstructures of varying bond strengths over all possible densities. A quantitative theory of the expansion of non-bonded particle compacts under certain combinations of applied shear stress and pressure is given. Physical models of the failure mechanisms are provided, their applicability depending on the particle interface strength. If the particle interface lacks strength, the flow surface is identical to that of the ‘critical state’ criterion of soil mechanics. The flow ellipse lies entirely within the negative pressure domain and failure occurs at the particle interface by various mechanisms including frictional slip. At the other extreme, if the particle interfaces are as strong in shear as the particles, failure occurs by plastic shear of the particles and the flow ellipse is centred at the origin. Density–stress and density–aspect ratio maps are shown which define these domains. Theoretical predictions compare well with the results of data compiled from the literature as well as data from tests performed in this study on cold pressed Al and Al/SiC powder compacts.  相似文献   

12.
《粉末冶金学》2013,56(31):112-118
Abstract

The factors governing the strength of cold-pressed metal powder compacts have been investigated. It is concluded that the most important parameters are freedom from oxidation and the plastic properties of the powder particles. These determine the roles played by surface energy and powder geometry in powder compaction.  相似文献   

13.
《粉末冶金学》2013,56(2):60-62
Abstract

The effect of compacting pressure on the radial/axial (R/A) shrinkage ratio for iron powder compacts was studied. It was observed that R/A and compacting pressure have a linear relationship. The effect of density distribution on R/A ratio inside the green compact was determined. The observed changes in R/A are attributed to the change in density distribution in the green compact.  相似文献   

14.
《粉末冶金学》2013,56(30):153-165
Abstract

In view of increasing industrial interest in the use of tin additions as an aid to the sintering of iron-based powder compacts, an examination has been made of the influence of the characteristics of the tin powder on sintering performance.

The effect of additions of narrow size-range fractions of atomized tin powder on the dimensional changes and tensile properties obtained on sintering Fe-Sn-Cu compacts made with –100 mesh (–152 μm) or – 300 mesh (– 53 μm) sponge iron and – 300 mesh (– 53 μm) atomized copper powders has been determined. The compacts contained tin and copper in the ratio 2:3. The narrow size fractions were separated from – 300 mesh tin powder by air elutriation. It was found that the use of coarse tin powder reduced the tensile strength of – 300 mesh iron-based Fe–1% Sn–1 ½% Cu compacts, but had no influence when this mixture was based on –100 mesh iron powder, or when the mixture composition was Fe–2% Sn–3% Cu. The effects have been examined in relation to the sintering mechanism by scanning electron microscopy and by X-ray microanalysis.  相似文献   

15.
《粉末冶金学》2013,56(1):91-93
Abstract

A preliminary study concerning the compaction of metallic powder was carried out in order to investigate a rarely explored route in powder metallurgy, to form complex geometry parts, known as gelcasting. Green bodies produced with as supplied stainless steel powder showed a tendency to form foam, which affected the surface finishing. The mechanical behaviour of green compacts was also affected by the processing additives present in the metallic powder. Organics in the as supplied powder were removed by thermal treatment at 500°C and additional samples were produced. Although no difference in green density was observed, these samples displayed better surface finish and mechanical characteristics, as a result of improved adhesion between the polymer network and particle surface. The results showed that the gelcasting process is able to produce green parts suitable for subsequent thermal treatment.  相似文献   

16.
《粉末冶金学》2013,56(27):164-178
Abstract

The properties of various commercial and experimental iron powder types and of compacts made from them in the density range 6·8–7·87 kg/dm3 by single-pressing, double-pressing, and hot-forging techniques have been determined. It was shown that the ductility in all cases was more adversely affected than the tensile strength by the presence of porosity. However, it was also shown that at any particular density level or with a given processing schedule the mechanical properties varied widely, depending on the iron powder used. On the basis of the mechanical-property results, the powder types to be preferred at different density levels are indicated.  相似文献   

17.
《粉末冶金学》2013,56(33):1-12
Abstract

Some current opinions on the role of plastic deformation in powder compaction are reviewed. The results of mechanical testing, metallographic examination, and X-ray-diffraction analyses of some atomized iron powder compacts are presented, together with those of metallographic examination of compacted spherical high-temperature, high-strength alloy powders. Extensive plastic deformation occurs even during the first stage of compaction but this is not the only cause of consolidation. A sequence of compacting mechanisms is described for the iron powder. It is suggested that the transition from Stage 1 to Stage 2 of compaction corresponds to the change from local to homogeneous plastic flow.  相似文献   

18.
《粉末冶金学》2013,56(2):70-73
Abstract

The effect of cooling rate from the sintering temperature upon the tensile strength of compacts from a mixture of iron and copper powder was investigated. The compacts were pressed at 450 and 390 MPa and sintered in hydrogen at 1120°C for 40 min. The copper content of the compacts varied from 0 to 12%. For alloys with Cu content >4% the tensile strength was found to be strongly dependent upon the cooling rate in the temperature range between 850 and 600°C, with rapidly cooled specimens being considerably stronger. In specimens with 8%Cu the tensile strength increased from 206 to 343 MPa when the cooling rate was increased from 10 to 200 degC min?1. In specimens with 2%Cu cooling rates above and below 600 degC min?1 appear to influence the tensile strength. Possible explanations for the observed effects of cooling rate upon tensile strength in sintered Fe–Cu alloys are discussed.  相似文献   

19.
《粉末冶金学》2013,56(1):12-19
Abstract

The cold compaction and vacuum sintering behaviour of a Ti powder and a Ti hydride powder were compared. Master sintering curve models were developed for both powders. Die ejection force, green strength and green porosity were lower for hydride powder than for Ti powder, all probably resulting from reduced cold welding and friction during compaction. For sintering temperatures above ~1000°C, most of the difference in the sintered density of Ti and hydride is explained by assuming equal densification, while taking into account the lower green porosity of compacts made from hydride powder. However, there is evidence that particle fracture during compaction also contributes to increased sintered density for hydride powder. The Ti powder conformed to a master sintering curve model with apparent activation energy of 160 kJ mol?. The activation energy for Ti hydride also appeared to be about 160 kJ mol?, but the model did not fit the experimental data well.  相似文献   

20.
《粉末冶金学》2013,56(1):78-82
Abstract

The effectiveness of pressure cycling on the consolidation of powder composites is investigated. Mixed Al and various amounts of Al2O3 powders were consolidated under static and cyclic pressure at room temperature in uniaxial consolidation experiments. The results showed that each pressure cycle increases green density and the cyclic effect is stronger when there is a relatively large volume fraction of Al2O3 powder. The compacts produced by pressure cycling have much higher strength than those produced with a single pressure excursion and the process ability of compacts should also improve via pressure cycling. Microscopic observations showed that greater uniformity is obtained in compacts by cyclic consolidation. The origin of the beneficial effect of pressure cycling is related to the deviatoric stresses generated by volumetric mismatch due to the different compressibilities of the phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号