首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Powder die compaction is modelled using the finite element method and a phenomenological material model. The Drucker–Prager cap model is modified with the goal to describe the formation of cracks during powder transfer, compaction, unloading, and ejection of the parts from the die. This is achieved by considering the cohesive strength and the cohesion slope, which characterise the current strength of the powder compact in the Drucker–Prager model, as state dependent variables. Evolution equations are formulated for these variables, so that the strength increases by densification and decreases by forced shear deformation. Some of the parameters appearing in the evolution equations are determined from measured green strength values. An iron based powder (Distaloy AE) is used for the experiments. Examples are shown to demonstrate that the density distribution can be calculated accurately as compared with an experiment, that cracking can be modelled at least qualitatively correctly, and that the compaction of complex 3D parts can be simulated.  相似文献   

2.
《粉末冶金学》2013,56(3):274-278
Abstract

Double plasma flame treatments were carried out on spray dried Cr2O3 agglomerated powders to increase their apparent density. The powders that were subjected to the first densification treatment didn't show the entirely melted state, and were fully melted only after the second plasma treatment. Plasma densification resulted in powder size decreasing as well as apparent density of particles and also resulted in the fluidity increasing due to the powder melting and surface smoothing effects. However, some parts of the particles after the second treatment showed a hollowed structure, especially for a particle size above 30 µm. The influence of the thermal conductivity of powder and the gas pressure within aggregates exposed to the plasma flame in the particle densification process was discussed in detail. The powder density strongly influenced the structure of plasma sprayed coatings. The dense coatings with high hardness and high bond strength was achieved in the coatings produced from Cr2O3 powders after plasma densification.  相似文献   

3.
Rapid sintering of iron powders under action of electric field   总被引:1,自引:0,他引:1  
《粉末冶金学》2013,56(2):203-204
Abstract

A new rapid sintering technique for iron powders compacted under the action of an electric field with high current density has been advanced. The results show that the sintering densification of iron powder could be finished in less than 6 min at a temperature of 800u C reached at a heating rate of 600 K s?1, and the relative density of the sintered compact was over 95%. Moreover, the sintering densification was almost finished in the heating stage of the compact.  相似文献   

4.
《粉末冶金学》2013,56(3):258-264
Abstract

Recent advances in direct metal laser sintering (DMLS) have improved this technique considerably; however, it still remains limited in terms of material versatility and controllability of laser processing. In the present work, a multicomponent Cu based metal powder, which consisted of a mixture of Cu, Cu–10Sn and Cu–8·4P powder, was developed for DMLS. Sound sintering activities and high densification response were obtained by optimising the powder characteristics and manipulating the processing conditions. Investigations on the microstructural evolution in the laser sintered powder show that liquid phase sintering with partial or complete melting of the binder (Cu–10Sn), but non-melting of the cores of structural metal (Cu) acts as the feasible mechanism of particle bonding. The additive phosphorus acts as a fluxing agent to protect the Cu particles from oxidation and shows a concentration along grain boundaries owing to the low solubility of P in Cu and the short thermal cycle of laser sintering. A directionally solidified microstructure consisting of significantly refined grains is formed, which may be ascribed to laser induced non-equilibrium effects such as high temperature gradient and rapid solidification.  相似文献   

5.
Sintering of Cu and thermoelectric Ca3Co4O9 was tried using a modified pulsed electric current sintering (PECS) process, where an electrically nonconductive die was used instead of a conventional graphite die. The pulsed electric current flowed through graphite punches and sample powder, which caused the Joule heating of the powder compact itself, resulting in sintering under smaller power consumption. Especially for the Ca3Co4O9 powder, densification during sintering was also accelerated by this modified PECS process.  相似文献   

6.
《粉末冶金学》2013,56(2):120-126
Abstract

This paper describes the microstructural and mechanical properties of injection moulded 17-4 PH stainless steel gas and water atomised powder. Gas and water atomised stainless steel powders were injection moulded with wax based binder. The critical powder loading for injection moulding were 62·5 and 55 vol.-% for gas and water atomised powders respectively. Binder debinding was performed using solvent and thermal method. After dedinding the samples were sintered at different temperatures for 1 h in pure H2. Metallographic studies were conducted to determine to extend densification and the corresponding microstructural changes. The results show that gas atomised powder could be sintered to a maximum (98·7%) of theoretical density, and water atomised powder could be sintered to a maximum (97·08%) of theoretical density. Maximum tensile strength was obtained for gas atomised powder sintered at 1350°C. The tensile strength of the water atomised powder sintered at the same temperature was lower owing to higher porosity. Finally, mechanical tests show that the water atomised powder has lower mechanical properties than gas atomised powder.  相似文献   

7.
温压技术是由在加热的阴模中压制预热的粉末组成[1],已知温压有助于零件密实,从而改进烧结件的性能[2,3]。温压需要在适合温压的温度范围内进行。特别是,粉末混合粉应具有好的流动性,同时对阴模模壁有良好润滑性,以减小脱模力。在试验室和工业生产中都研究了用粘结剂处理的和未经粘剂处理的用温压技术制造的材料的性状与性能。为了确定和定量各种关键生产参数,诸如压制压力,粉末温度与阴模温度,生产速率及零件大小对生坯和烧结件特性和零件脱模力的影响,进行了专门的试验研究。依照粉末流动性与松装密度的稳定性,压制压力与温度以及压制零件的重量与密度讨论了温压的工艺性。  相似文献   

8.
none 《粉末冶金学》2013,56(1):47-50
Abstract

The aim of this study was to develop a steel powder system for rapid tooling applications. The properties required are rapid densification, dimensional precision, high mechanical strength and corrosion resistance. To this end, the densification and microstructural development of a loose packed 200 grade maraging steel powder sintered with ferrophosphorous additions was examined. Liquid initially formed from a reaction of the Fe3P and carbon, which was a residue of the polymeric binder used to shape the powder compact. This liquid caused a burst of sintering which ceased as the liquid dissipated. On further heating, a phosphorous rich supersolidus liquid appeared at triple points and grain boundaries leading to rapid densification and a sintered density of 98%.  相似文献   

9.
《粉末冶金学》2013,56(4):291-297
Abstract

The grey iron microstructure Fe–2C–2Si powder based compact is tailored by different kinds of in situ and post sintering processing. This has been achieved by combining thermodynamic and kinetics modelling of microstructure development with sintering and controlled heat treatment experiments of tensile test specimens die compacted at 600 MPa. Applying optimised sintering conditions led to a grey iron like microstructure with 95% relative sintered density. Sinter hardening the compacts led to 500 MPa in yield strength and 600 MPa in ultimate tensile strength in combination with ductile fracture. Quenched and tempered condition showed the same strength values, but combined with brittle fracture due to martensitic structure. Pore rounding and partial pore filling by graphite were obtained by austenising isothermal hold during the cooling of the sintering cycle.  相似文献   

10.
《粉末冶金学》2013,56(3):238-243
Abstract

A new methodology was developed to observe and measure tool wear and tool surface quality during the die compaction process. The newly developed method is a non-destructive test that relies on silicon rubber to transcribe the inner surface profile of the compaction die. After verification of the method, aluminium and iron alloy powders were compacted to quantify tool wear and tool surface quality with two die materials, tungsten carbide and tool steel. The tool surface quality was quantified by recording surface roughness of the die replicas on a surface profilometer.  相似文献   

11.
《粉末冶金学》2013,56(3):281-287
Abstract

An instrumented die was used to investigate the behaviour of metal powders during cold (ambienttemperature) and warm (up to 140°C) compaction. This instrument enables simultaneousmeasurement of density, die wall friction coefficient, the triaxial stresses acting on the powderduring the course of compaction and ejection pressure. Commercial iron, titanium, aluminium,316L stainless steel (SS) and aluminium–silicon powders were employed for investigation. Theresults demonstrated the advantages of powder preheating on the compaction behaviour of metalpowders concerning green density, dimensional changes, frictional behaviour, ejectioncharacteristics and compactibility. However, the outlines also determined that the response ofthe non-ferrous powders to powder preheating is somehow different from those of the ferrouspowders. In this context, the behaviour of prealloy aluminium–silicon powders during compactionwas found of particular interest, as their compactibility is strongly affected by powder preheating,whereas the dimensional changes after ejection decrease considerably. This article presents theeffect of cold and warm compaction on the consolidation and ejection characteristics of ferrousand non-ferrous metal powders. The influence of compaction condition (pressure andtemperature) with considering of the powder characteristics and densification mechanisms areunderlined.  相似文献   

12.
《粉末冶金学》2013,56(3):217-223
Abstract

The consolidation behaviour of particulate reinforced metal matrix composite powders during cold uniaxial compaction in a rigid die was studied. Al–SiC powder mixtures with varying SiC particle size, ranging from nanoscale (50 nm) to microscale (40 µm), at different volume fractions up to 30% were used. Based on the experimental results, the effect of the reinforcement particles on the densification mechanisms, i.e. particle rearrangement and plastic deformation, was studied using modified Cooper–Eaton equation. It was found that by increasing the reinforcement volume fraction or decreasing its size, the contribution of particle rearrangement on the densification increases while the plastic deformation becomes restricted. In fact, when percolation network of the ultrafine reinforcement particles is formed, the rearrangement could be the dominant mechanism of consolidation. It was also shown that at tap condition and at the early stage of compaction where the particle rearrangement is dominant, the highest density is achieved when the reinforcement particle size is properly lower than the matrix (0˙3<the size ratio<0˙5) and the fraction of hard particles is relatively low (<10%). At high compaction pressures, the reinforcement particles significantly influence the yield pressure of composite powders, thereby retarding the densification.  相似文献   

13.
14.
none 《粉末冶金学》2013,56(1):49-54
Abstract

In order to investigate the friction behaviour of powder during compaction, a new method has been developed. Compaction is a complicated process and direct and continuous measurement of the coefficient of friction is not easy, because the coefficient of friction varies due to changes in such process parameters as pressure distributions, powder surface deformation etc. In this paper, a new device for measuring the coefficient of friction between metal powder particles in contact with the die wall during compaction is presented. Using the conventional methods for direct measurement of the radial pressure during compaction is very difficult. The new device offers the possibility of investigating the normal pressure on the powder particles directly and continuously by keeping the green density constant. The measurements are performed using strain gauges mounted on the upper punch. The upper punch surface in the new device corresponds to the die wall in a conventional press. The sliding velocity, compaction velocity, normal load and temperature can be monitored and controlled. Measurement of the coefficient of friction at low densities is one of the advantages and possible applications of this apparatus. The investigation shows that the powder compaction is controlled by a combination of powder rearrangement and elastic and plastic deformation of particles. At densities below 4g cm-3 the dominant process is particle rearrangement. No plastic deformation occurs at such low values of density. At densities above 4·5g cm-3 the plastic deformation of the powder surface in contact with the die wall seems to be completed and the coefficient of friction is more or less constant.  相似文献   

15.
《粉末冶金学》2013,56(3):273-277
Abstract

The purpose of this paper was to evaluate if a density gradient was present in green (unsintered) titanium powder samples prepared by cold isostatic pressing, and to investigate to what extent this density gradient could cause a deformation in sintered titanium dental copings (inner parts of dental crowns) due to differentiated sintering shrinkage. Three identical cylinder shaped samples were prepared at 700 MPa and the average 1 mm layer density was measured. A very small but reproducible density gradient was found (0.6 units of percentage) from the powder body surface in toward the centre. The density varied from 90.1 to 90.7%. An image analysis on sintered copings lined out the density gradient along the shape. Considering the risk of obtaining substantial deformation when preparing titanium dental copings using powder metallurgy at the pressure used, the small density gradient found was regarded as harmless.  相似文献   

16.
《粉末冶金学》2013,56(4):341-344
Abstract

The purpose of the present paper is to determine the apparent yield stress of powder metallurgy (PM) materials at high temperatures. A brief introduction concerning the theory of yielding of PM materials is included. The models of loading functions for porous materials are recalled. The experiments have been undertaken by the author to identify the parameters of PM materials in hot forming. Two materials are considered: pure iron and aluminium powders.  相似文献   

17.
《粉末冶金学》2013,56(3):228-232
Abstract

Numerical simulation of the powder injection moulding of the stainless steel feedstock was performed using finite elements/finite differences method. Influence of the process parameters on the temperature development in the moulded part was estimated. Frictional heating between the layers of the feedstock with different viscosity may cause the temperature rise to a level dangerous for the integrity of the feedstock. Both process conditions and position of the gate affect the temperature distribution within the part. The temperature homogeneity can be improved by optimisation of the mould design and process conditions.  相似文献   

18.
《粉末冶金学》2013,56(3):265-270
Abstract

Powder mixtures composed of liquid forming master alloy powder and coarse iron powder were sintered to near full density by having a high amount (20 wt-%) of liquid phase during sintering. This was made possible by the use of the Fe-P-C system with or without Cu. Without post-sintering treatment, a brittle microstructure was obtained. By means of altered C and P control and decarburisation heat treatment of the as sintered material, the final non-brittle microstructure was achieved. Using the open porosity and liquid phase as a diffusion path, rapid decarburisation is created and the local combination of carbon and phosphorus in the microstructure is avoided. In this way, iron phosphide is not formed on grain and/or particle boundaries. Presence of pores is confirmed to be beneficial for grain growth control.  相似文献   

19.
《粉末冶金学》2013,56(3):249-253
Abstract

In this paper, a simple manufacturing process for Mn–Zn ferrite powder is described, which can be considered as a modified powder injection moulding process. This method uses acrylic thermosetting resin as the binder. The moulding is carried out at room temperature by directly pouring the slurry (resin and ferrite) in the mould. The mixture is heated at the curing temperature (70°C) of resin to permit polymerisation and cross linking of the polymer. In order to optimise the moulding step, different volume fractions of powder with resin were mixed. The optimal powder load was 50 vol.-%. The best thermal debinding cycle was determined by means of thermo-gravimetric analysis. Sintering was performed according to oxygen partial pressure equilibrium curves at 1330°C for 3 h. Magnetic properties were compared with those obtained by uniaxial compacted parts.  相似文献   

20.
《粉末冶金学》2013,56(1):99-104
Abstract

This paper reviews the mechanical and microstructural characteristics of hypoeutectoid steels obtained by powder technology, in which various carbonaceous petroleum products provide the carbon constituent. These steels are compared with others of similar composition obtained from graphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号