首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
none 《粉末冶金学》2013,56(4):314-322
Abstract

The objective of this research was to initiate the development of powder metallurgy alloys based on the Al–Ni–Mg system. In doing so, binary (Al–Mg) and ternary (Al–Ni–Mg) blends were prepared, compacted and sintered using elemental and master alloy feedstock powders. Research began with fundamental studies on the sintering response of the base aluminium powder with additions of magnesium. This element proved essential to the development of a well sintered microstructure while promoting the formation of a small nodular phase that appeared to be AlN. In Al–Ni–Mg systems a well sintered structure comprised of α aluminium plus NiAl3 was produced at the higher sintering temperatures investigated. Of these ternary alloys studied, Al–15Ni–1Mg exhibited mechanical properties that were comparable with existing commercial 'press and sinter' alloys. The processing, reaction sintering and tensile properties of this alloy were also found to be reproducible in an industrial production environment.  相似文献   

2.
采用机械球磨混粉和真空烧结相结合的方法制备了Fe-Cu-Mo-C合金,研究了不同烧结温度对粉末冶金Fe-Cu-Mo-C合金材料的显微组织、密度、抗拉强度和摩擦磨损性能的影响。结果表明:随着烧结温度由1 000℃升高到1 100℃,Fe-Cu-Mo-C合金烧结体组织孔隙数量减少、孔隙尺寸明显降低;当烧结温度提高到1 150℃时,烧结体组织中孔隙尺寸增大。随着烧结温度升高,烧结体的密度、硬度、抗拉强度和伸长率先增大后减小,磨损量先降低后升高。最佳烧结温度为1 100℃,此时烧结体的密度为6.90 g/cm3,抗拉强度为319 MPa,洛氏硬度为34.7 HRC,磨损量为0.087 g。  相似文献   

3.
Microwave energy is highly efficient for heating and processing different materials. In recent years, this type of heat transfer has been used in sintering process. Rapid and highly efficient heating, time and energy saving, and improved properties of sintered materials are advantages of microwave sintering. In this paper, Fe and Fe-Cu powder compact samples (cylindrical and bone shapes) are sintered both in microwave and electrical tube furnaces. The microwave generator has 2.45 GHz frequency and 1 KW power. Times are selected in the range of 5–25 min for microwave sintering and 5–40 min for electrical heating. The sintering temperature is set at 1120°C. Samples are sintered in the reducing atmosphere of 95% N2 + 5% H2 mixture. The density, hardness, and tensile strength of the samples are measured. The results are compared. The results show that the microwave-sintered materials have a finer microstructure. The microwave-sintered materials have 6–8% higher density, 5–10 HV5 higher hardness, and about 10% higher tensile strength than conventionally sintered materials.  相似文献   

4.
《粉末冶金学》2013,56(4):291-297
Abstract

The grey iron microstructure Fe–2C–2Si powder based compact is tailored by different kinds of in situ and post sintering processing. This has been achieved by combining thermodynamic and kinetics modelling of microstructure development with sintering and controlled heat treatment experiments of tensile test specimens die compacted at 600 MPa. Applying optimised sintering conditions led to a grey iron like microstructure with 95% relative sintered density. Sinter hardening the compacts led to 500 MPa in yield strength and 600 MPa in ultimate tensile strength in combination with ductile fracture. Quenched and tempered condition showed the same strength values, but combined with brittle fracture due to martensitic structure. Pore rounding and partial pore filling by graphite were obtained by austenising isothermal hold during the cooling of the sintering cycle.  相似文献   

5.
《粉末冶金学》2013,56(2):70-73
Abstract

The effect of cooling rate from the sintering temperature upon the tensile strength of compacts from a mixture of iron and copper powder was investigated. The compacts were pressed at 450 and 390 MPa and sintered in hydrogen at 1120°C for 40 min. The copper content of the compacts varied from 0 to 12%. For alloys with Cu content >4% the tensile strength was found to be strongly dependent upon the cooling rate in the temperature range between 850 and 600°C, with rapidly cooled specimens being considerably stronger. In specimens with 8%Cu the tensile strength increased from 206 to 343 MPa when the cooling rate was increased from 10 to 200 degC min?1. In specimens with 2%Cu cooling rates above and below 600 degC min?1 appear to influence the tensile strength. Possible explanations for the observed effects of cooling rate upon tensile strength in sintered Fe–Cu alloys are discussed.  相似文献   

6.
《粉末冶金学》2013,56(32):374-386
Abstract

The mechanisms operating during the sintering of iron-phosphorus PM alloys are discussed, as well as the factors contributing to the unique combination of strength, ductility, and toughness that is characteristic of these materials. Alloying methods are reviewed with special reference to powder compressibility, tool wear during compaction, and homogenization during sintering. The preferred production method is to add phosphorus in the form of a fine Fe3P powder to iron powder. The mechanical properties of a number of sintered steels made with and without Fe3P additions to sponge iron or to high-purity atomized iron powders are reported. Use of atomized powder makes it possible to reach extremely high density by single pressing and the resulting phosphorus-containing sintered steels have very high ductility and impact strength. The fatigue strength is related linearly to the tensile strength, with a correlation coefficient of 0·91. It is concluded that structural factors other than those that control ductility and toughness are responsible for the fatigue resistance of sintered steels.  相似文献   

7.
《粉末冶金学》2013,56(4):488-496
Abstract

Two compositions of pewter alloy were sintered using both microwave and conventional vacuum sintering, and the effects of sintering time, temperature and weight percentage of copper and antimony on the mechanical and structural properties were examined for both sintering methods. Microwave sintered samples had finer microstructures, higher densities, higher hardness and tensile strength compared to the conventionally sintered samples and traditionally cast pewter. By increasing the copper and antimony contents, higher hardness was achieved. Better mechanical properties were found after microwave sintering after shorter sintering times compared with conventional sintering, but longer sintering times resulted in better diffusion for both sintering methods. The microwave sintered samples in general were capable of achieving similar amounts of diffusion to those conventionally sintered for the same time. But the total sintering process is much faster in microwave heating than in conventional heating due to the rapid heating effect.  相似文献   

8.
《粉末冶金学》2013,56(3):219-227
Abstract

The role of microstructure on mechanical properties of sintered ferrous materials was studied using a method based on electrical conductivity measurement. The method was accompanied by quantitative fractography to evaluate the dewaxing and sintering process in iron compacts. The effects of manufacturing parameters, such as compacting pressure in the range of 150–800 MPa, sintering temperature from 400 to 1300°C, sintering time up to 8 h, and lubrication mode were investigated. Several mathematical models were checked to obtain the best one for prediction of electrical conductivity changes as a function of manufacturing parameters. The mechanical properties of the sintered compacts were also evaluated to establish a relationship between conductivity, total porosity, pore morphology, and mechanical behaviour. The results show that the electrical conductivity/resistivity of sintered materials is closely related to its microstructure, so that measuring these properties can replace destructive test methods for prediction of mechanical strength of sintered materials with homogeneous matrix microstructure. The application of the method is shown for sintered Fe, Fe–0·8%C, and Fe–1·5%Mo–0·7%C compacts.  相似文献   

9.
《粉末冶金学》2013,56(35):214-236
Abstract

Sintered alloys based on the Fe-Mn system have been investigated by using single-pressing and double-pressing techniques. Fe-Mn (Mn up to 8 wt.-%) and Fe-Mn-C (C up to 1·4 wt.-%) alloys were prepared both with manganese as an electrolytic powder and with a Fe-Mn master alloy. The influence of sintering temperature and sintering time on mechanical properties and homogenization is discussed. The effect of the additional alloying elements Cr, Mo, eu, and of their combinations on mechanical properties has been determined. Further investigations were carried out with a Fe-Mn-Cr-Mo-C master alloy. The optimum single-pressed and double-pressed alloy (Fe with Mn 0·8, Cr 0·8, Mo 0·8, and total C 0·6%) has a tensile strength (σB) of >700 N/mm2. Optimum alloys of all investigated systems were hot-forged and their mechanical properties are compared with those of single- and double-pressing techniques. The alloys were heat-treated and their tempering behaviour determined. Jominy standard tests were carried out to determine hardenability of the porous sintered materials.  相似文献   

10.
W-Ni-Cu-Sn系高比重合金的研究   总被引:5,自引:0,他引:5  
本文研究了烧结温度、保温时间以及添加锡对W-Ni-Cu合金性能的影响。结果表明,不添加锡的93W-Ni-Cu合金与添加1%Sn的85W-Ni-Cu-Sn合金相比,其烧结温度由1320℃降至1140℃,即烧结温度降低约200℃;抗拉强度从686N/mm2提高到980N/mm2;热膨胀系数提高了28%。获得了较好的综合性能。  相似文献   

11.
《粉末冶金学》2013,56(3):131-142
Abstract

Commercial production of low-alloy steel components from blended mixtures of the constituents in powder form involves the use of sintering times which are too short to allow the production of a chemically homogeneous material. This has prompted an investigation into the relationships between the degree of homogeneity, microstructure, and mechanical properties in a sintered and heat-treated low-alloy steel, prepared in this way. A quantitative assessment has been made of the degree of homogeneity by measuring the nickel content of a large number of small areas within a complete cross-section of the specimen and this has been compared with plated and pre-alloyed material with the same overall composition but greater homogeneity prior to sintering. Provided the degree of homogenization was greater than a certain critical value the relationship between tensile strength and porosity fitted well with previously published work. The production of small quantities of non-martensitic phases from austenite during quenching was not detrimental in such alloys but, in quenched specimens of less homogenous alloys, residual austenite had a very detrimental effect on tensile strength, particularly when the austenite was distributed as a thin interparticle network. The relationship between tensile strength and porosity in these heterogeneous alloys did not agree with any of the accepted equations that represent this relationship.  相似文献   

12.
《粉末冶金学》2013,56(26):130-155
Abstract

Powder-metallurgy components which are to withstand high dynamic stress are frequently required to possess both high strength and great toughness. This combination of properties can best be achieved by increasing the density of the sintered component and one method of doing so is bot pressing.

This paper deals with the mechanical properties of sintered iron–nickel alloys produced by hot compacting in six stages, as follows:

(1) Preparation of the powder mix.

(2) Production of compacts under a pressure of 8 Mp/cm2

(3) Heating the compacts to 1000°C (1275 K).

(4) Re-pressing the hot compacts in a die heated to 300°C (575 K).

(5) Cooling in air.

(6) Sintering at optimum temperature and time under optimum furnace conditions.

The investigation covered the dependence of tensile strength, elongation at fracture, and Brinell hardness of alloys with Ni contents of 1–10% on the sintering temperature and time, on the furnace conditions, and on raw-material variables.

It was found that Fe–Ni powder-metallurgy parts with a maximum tensile strength of ~60 kp/cm2 could be produced. The Brinell hardness reached 190 kp/mm2 with 10% Ni content. Elongation at fracture was in the region of 45% with 1% Ni and remained comparatively satisfactory even with high Ni contents if very pure raw materials were used. Powder-metallurgy materials with a tensile strength of 60 kp/cm2 and an elongation at fracture of 17% can be obtained by the process.  相似文献   

13.
《粉末冶金学》2013,56(4):263-266
Abstract

Titanium alloys containing β stabilising elements such as Nb, Zr and Ta are particularly promising as implant materials because of their excellent combination of low modulus, high strength, corrosion resistance and biocompatibility. A low elastic modulus is important for implants to avoid stress shielding and associated bone resorption. The difficulty of producing complex shapes of these alloys by conventional methods makes metal injection moulding (MIM) attractive. Ti–17Nb alloy parts with densities 94% of theoretical have been produced by MIM of a feedstock based on blended elemental powders. Scanning electron microscopy reveals a typical α?β Widmanstätten microstructure with a precipitated α phase layer along the grain boundaries. The parts exhibit an ultimate tensile strength of 768 MPa and a plastic elongation of over 5%. The modulus of elasticity, about 84 GPa, is more than 20% lower than that of cp Ti and Ti–6Al–4V.  相似文献   

14.
Sintered materials have significantly higher strength than green compacts. The evolution of that strength during the sintering cycle involves a combination of annealing, thermal softening, and sintering events. The dynamic interplay between heating rate, sintering time, and sintering temperature controls the in situ strength and determines the final sintered strength. Although sintered strength is a well-explored subject, the dynamic evolution of strength requires new models. This research has measured both the sintered and in situ strengths as functions of heating rate, hold times, and temperature for die-compacted prealloyed bronze powder. A core concept is the use of an integral work of sintering to determine the effective strengthening due to sintering. The model is used to map strength evolution vs the key processing parameters. It is concluded that, during solid-state sintering of bronze, the key sources of distortion are the density and thermal gradients.  相似文献   

15.
ABSTRACT

The influence of die wall lubrication on the green strength and the tensile properties of a 1.5%Mo and 0.5%C steel, both as sintered and sinterhardened at 1250°C was investigated.

Samples compacted using die wall lubrication had green strengths more than 100% higher than samples compacted at the same pressure using bulk lubrication, and a sintered density up to 98% of the pore-free ones may be achieved, compared to a maximum of 95% with bulk lubrication.

Pore morphology and the matrix microstructure and microhardness were not affected.

The tensile properties of both sintered and sinterhardened materials were much better for die wall lubrication than for bulk lubrication. Tensile strength increased up to 20%, tensile elongation up to 60%. The effectiveness of the system that delivers the lubricant on the die wall surface every stroke was verified successfully in the production of tensile specimens that do not have an axisymmetric geometry.  相似文献   

16.
Craus M.-L.   《粉末冶金学》2013,56(4):367-373
Abstract

Stainless steel 316L MIM components can be made from either prealloyed powders or from master alloys blended with carbonyl iron powder. In this study these two techniques were compared using prealloyed and master alloyed gas atomised powders of ? 16 μm and ? 22 μm sizes. Four different compounds were prepared, characterised and injection moulded into tensile bars. The bars were compared for green strength, green defects, sintered strength and microstructure. The green components are stronger when carbonyl iron powder is used with the gas atomised master alloy. This material also seems to be less susceptible to moulding defects. The sintering strength of the material produced using the pre-alloyed powder was higher than the master alloyed prepared material. Little difference in mechanical properties existed between the materials fabricated from gas atomised prealloyed ? 16 μm and the ? 22 μm powders. Also, the viscosity of the mixtures was higher for the ? 16 μm material and the master alloy mixtures than for the –22 μm gas atomised prealloyed powders.  相似文献   

17.
 Effect of sinter hardening on the microstructure, density, hardness and tensile properties of Astaloy 85Mo+0.7% graphite was investigated. For this purpose, Astaloy 85Mo, a pre-alloyed powder, was mixed with 0.7% UF4 graphite and then pressed in single action die and sintered at 1120 ℃ for 30 min in N2-10%H2 atmosphere. Then samples were cooled from 0.5 to 3 ℃/s sintering temperature in accordance with different cooling rates. The difference in microstructure, hardness, density and tensile properties of the samples associated with different cooling rates from sintering temperature has been investigated. The results show that the microstructure remains bainitic by changing cooling rate, but it becomes finer and then the hardness and tensile strength of the samples will increase by increasing the cooling rate from sintering temperature.  相似文献   

18.
《粉末冶金学》2013,56(35):107-123
Abstract

Three plain iron powders of different types (sponge-iron, atomized and electrolytic iron powder) were studied with respect to their sintering behaviour and to the influence of manufacturing parameters—i.e., compacting pressure, sintering temperature, and sintering atmosphere—on the microstructure and the properties of sintered compacts. The changes of length, electric conductivity, and strength during sintering are explained in physical and chemical terms. Technical sintering diagrams are presented. The influence of sintering atmospheres on the mechanical properties of sintered compacts is shown for the three types of powder. The correlation between pore structure and strength is discussed; analytical relationships are developed which are in agreement with the experimental results.  相似文献   

19.
在惰性气体雾化法制备的Fe-1.1Ni-0.5Mo-0.5Cr预合金粉末中添加1.5%的Cu粉和0.6%的C粉(均为质量分数)以及还原铁粉(添加量分别为0、10%、20%和30%),混合均匀后在600 MPa压力下模压,在1 180℃烧结1h.烧结合金经180℃/1h回火处理后,进行密度、硬度、拉伸力学性能检测以及显微...  相似文献   

20.
《粉末冶金学》2013,56(3):221-227
Abstract

PM Distaloy and Astaloy alloys have many applications in the automotive industry and are used in structural elements with different wear resistance values. Their main features are adequate density, hardness, tensile strength, and good ductility. For the purpose of the experiment presented here, Distaloy SA and Astaloy Mo powders, alloyed with various amounts of elemental boron powder, were used. The Distaloy and Astaloy alloys were produced through mixing, compacting, and sintering at t=1393 and 1473 K, and, after the completed sintering process, they were plasma nitrided at 793 K. Experimental results showed that if boron was added, while sintering, the shrinkage phenomena increased ( 1473 K) and some parameters of those alloys (density, hardness, and tensile strength) were improved. Upon the ion nitriding treatment of the surface of base Astaloy Mo samples, a surface layer was created composed of the ε solution and γ' nitride, whereas the surface layer on the Distaloy SA base was mainly composed of a γ' compound. Boron activates the sintering process of Distaloy SA and Astaloy Mo samples but it has no significant impact on the surface layer's thickness of Distaloy SA alloys as opposed to Astaloy Mo alloys in which boron promotes a greater thickness of surface layers along with a reduced depth of nitrogen diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号