首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, mechanically alloyed Al-2024 and Al-2024/Al2O3 powders are densified by conventional sintering and by equal channel angular pressing (ECAP) with and without back pressure. The powder was encapsulated in an aluminium can for consolidation through ECAP. The properties obtained in the compacts by conventional sintering route and by ECAP are compared. The effect of conventional sintering and ECAP on consolidation behaviour of powder, microstructure, density and hardness is discussed. Room temperature back pressure aided ECAP results in nearly full denser (97?% of its theoretical density) compact at room temperature. Nano Indentation technique was used to determine the modulus of the consolidated compacts.  相似文献   

2.
Results of the investigation of preparation conditions (pressure of powder pressing and time of sintering of compacts) and of the effect of aluminum additions (5–20 wt %) on the properties of a sintered porous material of an aluminum powder and its mixture with an Al2O3 powder are given. The possibility is shown of the production of porous (P = 30–35%), highly permeable (k = 2.0 to 2.5 × 10?13 m2) aluminum-based sintered material with an addition of 20% Al2O3 and maximum size of pores equal to 1.3–1.5 μm in the following regime: p = 60 MPa, T = 723–823 K with an isothermal holding for 30–60 min.  相似文献   

3.
《Acta Metallurgica》1985,33(10):1919-1926
The growth behavior of Mo grains in contact with Al2O3 particles during liquid phase sintering was studied in 95.4 Mo-4 Ni-0.6 Al2O3 (wt%). Sintering of the powder compacts at 1460°C was repeatedly interrupted by cooling to 1300°C and reheating to 1460°C. Layers grown on Mo grains during each sintering interval between the interruptions were revealed by etch boundaries. The Mo grains grew around Al2O3 particles by solution-reprecipitation. In contact areas the Mo grains and the Al2O3-particles were separated by thin liquid films. Deposition or loss of material in contact areas resulting from material transport in the thin liquid film was found to be slow. During prolonged sintering some Al2O3 particles were trapped within growing Mo grains.  相似文献   

4.
Summary Materials containing 0.5, 1, 2, 3, 4, and 5 vol. % Al2O3 were obtained from mixtures of nickel oxide and alumina powder reduced with hydrogen. The apparent density of the reduced powder and the relative density of pressed compacts vary nonuniformly with increasing alumina content. The material with 1 vol. % Al2O3 has the maximum values of these characteristics. The sintering shrinkage and relative density of sintered specimens are minima for this composition. Disperse alumina inclusions appear to exert a dual effect on the shrinkage of contacts during sintering: On the one hand, they decrease shrinkage by disturbing contact between the nickel particles; on the other hand, they facilitate the evacuation of the water vapor forming during sintering. The disperse inclusions break up the nickel submicrograins and affect the microdistortions of the nickel lattice.  相似文献   

5.
《粉末冶金学》2013,56(3):272-276
Abstract

This paper highlights the effect of different ceramic particles on the structure of PM copper based brake linings. The copper based brake linings using a range of ceramic additives (1–6 wt-%) were prepared by powder metallurgy (PM). The optimum conditions for the production of brake linings were determined as compaction under 400 MPa and sintering at 805°C for 20 min in an argon atmosphere. The density of copper based brake linings decreased after sintering with the increase in ceramic powder contents for both Al2O3 and B4C ceramic particles. The microstructural characterisation of produced samples showed that the lower boiling point elements in the as supplied powder vaporise during sintering from the structure and this leads to an increase in the porosity amount of the final component.  相似文献   

6.
《粉末冶金学》2013,56(1):68-72
Abstract

High density Fe3Al was produced through transient liquid phase sintering, using rapid heating rates of greater than 150 K min-1 and a mixture of prealloyed and elemental powders. Prealloyed Fe2Al5/FeAl2 (50Fe/50Al, wt-%) powder was added to elemental iron powder in a ratio appropriate for producing an overall Fe3Al (13·87 wt-%) ratio. The heating rate, sintering time, sintering temperature, green density and powder particle size were controlled during the study. Heating rate, sintering time and powder particle size had the most significant influence upon the sintered density of the compacts. The highest sintered density of 6·12 Mg m-3 (92% of the theoretical density for Fe3Al) was achieved after 15 minutes of sintering at 1350°C, using a 250 K min- 1 heating rate, 1-6 μm Fe powders and 5·66 μm alloy powders.

SEM microscopy suggests that agglomerated Fe2Al5/ FeAl2 particles, which form a liquid during sintering, are responsible for a significant portion of the remaining porosity in high sintered density compacts, creating stable pores, larger than 100 μm diameter, after melting. High density was achieved by minimising the Kirkendall porosity formed during heating by unbalanced diffusion and solubility between the iron and Fe2Al5/FeAl2 components. The lower diffusion rate of aluminium in the prealloyed powder into the iron compared with elemental aluminium in iron, coupled with a fast heating rate, is expected to permit minimal iron-aluminium interdiffusion during heating so that when a liquid forms the aluminium dissolves in the iron to promote solidification at a lower aluminium content. This leads to a further reduction in porosity.  相似文献   

7.
In-situ Al matrix composite was synthesized from Al–TiO2–C powder mixtures using mechanical alloying and heat treatment, subsequently. The effect of ball milling on reaction processes of the resulting nanocomposite was investigated. The evaluation of powder mixture without mechanical activation showed that at 900°C aluminum reduced TiO2, forming Al3Ti and Al2O3. After 20 h mechanical activation of powder mixture, Al3Ti and Al2O3 were fabricated. After that, by increasing milling time up to 30 h, no new phases formed. The DTA analysis of 30 h milled powder indicated two peaks after aluminum melting at 730 and 900°C. The XRD results confirmed that at 730°C, molten Al reacted with TiO2 and C, forming Al3Ti, Al2O3 and Al4C3. After that, at 900°C, Al3Ti reacted with Al4C3, causing TiC formation. This results proposed that the TiC formation is associated by a series of reactions between intermediate products, Al3Ti and Al4C3 and the resultant nanocomposite was successfully synthesized after 30 h milling and heated by DTA analysis up to 1200°C.  相似文献   

8.
《粉末冶金学》2013,56(3):292-298
Abstract

FeAl–Al2O3 nanocomposite powder was synthesised under different conditions of milling and annealing. The structure, morphology and microstructure of the milled powders were monitored by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Results showed that the formation of FeAl and Al2O3 took place in explosive mode during milling with the cup speed of 600 rev min?1. However, at the cup speed of 500 rev min?1, FeAl and Al2O3 were synthesised only during annealing. Formation of the FeAl and Al2O3 was completed after 120, 270 and 360 min of milling at the ball to powder weight ratios (BPRs) of 5∶1, 15∶1 and 10∶1 respectively. Maximum microhardness of 8·8 GPa was obtained in the 270 min milled sample with the BPR of 15∶1 and cup speed of 600 rev min?1. Mean grain size of 30 nm was calculated in the annealed FeAl that was in consistent with TEM results.  相似文献   

9.
Spray-drying process was selected to agglomerate ball milled NiCoCrAlY–Al2O3 composite powders. The effect of the starting alloy powder size on the morphology of composite powder was studied. The parameters of milling were optimised by orthogonal experiment to improve the powder’s flowability and apparent density. Then the optimised powder was sprayed by air plasma spray to prepare NiCoCrAlY–Al2O3 composite coating. The results showed that the size distribution of starting particles decided the deformation of alloy particles and the characteristics of agglomerated powders eventually. With the decreasing size range of the starting alloy particles, the sphericity of agglomerated powders increased. The optimised milling parameters were as follows: solid content, 60?wt-%; BPR, 4:1; the rotating speed, 350?rev?min?1; and milling time, 5?h. And the contribution of solid content was the largest. The Al2O3 splats showed good adhesion with alloy matrix when the composite powder melted in good condition.  相似文献   

10.
《粉末冶金学》2013,56(3):308-313
Abstract

This work was devoted to the development of NiAl–matrix composite and its production by reactive sintering powder metallurgy. Various types of reinforcement (aluminium oxide, silicon and tungsten carbides, titanium silicide) were tested. The best chemical compatibility and the highest hardness and wear resistance were achieved by Al2O3 fibres. Electroless nickel plating pretreatment of Al2O3 fibres improves both distribution of fibres and hardness of the composite. However, it strongly reduces the wear resistance, probably due to phosphorus content in the nickel coating. In situ formation of NiAl–Al2O3 composites by reactive sintering of a pressed powder mixture of Ni, Al and NiO was unsuccessful. Only a small amount of cubic γ-Al2O3 was detected after reactive sintering and hence no significant hardness increase was observed.  相似文献   

11.
The current study shows the dramatic effect of an electric field (EF) and use of nanosized cryomilled grains on accelerating sintering kinetics during spark plasma sintering of blended elemental powder compacts of Ti53Al47 targeted to produce γ-TiAl intermetallic compounds. The EF had the dominating effect since it reduced the activation barrier for diffusion through Al3Ti leading to faster growth of Al3Ti; the precursor to γ-TiAl. The Avrami exponent (n) determined for the micrograin compact lies between 1.0 and 1.5, which indicates that reaction sintering is controlled by bulk diffusion in these compacts, while for cryomilled compacts this is between 0.7 and 1.0 suggesting the important role of dislocations and grain boundaries on the transformation during reaction sintering. The activation energies were found to be in increasing order as: cryomilled compacts with EF (182 kJ/mol); micrograin compacts with EF (290 kJ/mol); cryomilled compacts without EF (331 kJ/mol); and micrograin compacts without EF (379 kJ/mol). The cryomilled microstructure also enhanced the sintering kinetics because of the availability of faster diffusing paths in Al and Ti including larger grain boundary area and dislocation density.  相似文献   

12.
《粉末冶金学》2013,56(3):360-365
Abstract

This study aims to compare the effect of Al2O3 nanoparticle additions on the densification and mechanical properties of the injection moulded 316L stainless steels. The 316L stainless steel and Al2O3 nanoparticles were dry mixed and moulded using a wax based binder. The critical powder loading for injection moulding were 60 vol.-% for all samples. Debinding process was performed in solvent using thermal method. After the debinding process, the samples were sintered at 1405°C for 60 and 120 min under vacuum. Metallographic examination was conducted to determine the extend of densification and the corresponding microstructural changes. The sintered samples were characterised by measuring tensile strength, hardness and wear behaviour. Wear loss was determined for all the samples after wear testing. All the powders, fracture surfaces of moulded and sintered samples were examined using scanning electron microscope. The sintered density of straight as well as Al2O3 nanoparticles reinforced injection moulded 316L stainless steels increases with the increase in sintering time. The additions of Al2O3 nanoparticles improve the hardness and wear resistance with the increase of sintering time.  相似文献   

13.
The alloying behavior of Al-25 at. pct V-12.5 at. pct M (M = Cu, Ni, Mn) by planetary ball milling of elemental powders hours as been investigated in this study. In Al3V binary system, an amorphous phase was produced after 6 hours and the amorphous phase was mechanically crystallized after 20 hours. The large difference in the diffusivities between Al and V atoms in Al matrix results in the formation of the amorphous phase when the homogeneous distribution of all the elements in a powder was achieved at 6 hours. According to thermal analyses, the amorphous phase in the binary Al3V was crystallized at 350 °C. The addition of ternary elements (Cu, Ni, Mn) increased the activation energy for the crystallization to D022 phase by interfering with the diffusion process. Therefore, ternary element addition improved the thermal stability of the amorphous structures. The amorphous phase in the 12.5 at. pct Ni added Al3V was crystallized to D022 phase at 540 °C. The mechanical crystallization of the amorphous phase in the ternary element-added Al-V system either occurred later or was not observed during ball milling up to 100 hours. It is thought that the amorphous intermetallic compacts could be produced more easily in ternary element-added alloys by using an advanced consolidation method.  相似文献   

14.
An 80 mass% ZrO2 ― 20 mass% Al2O3 powder was produced using a complex method which integrates sol-gel technology and hydrothermal synthesis. The specific surface areas of the powder varied from 39 to 5.3 m2/g depending on the thermal treatment conditions. Metastable F-ZrO2 formed after powder annealing at 400°C. The phase transformation F-ZrO2 → T-ZrO2 (traces of M-ZrO2) occurred under powder thermal treatment from 700 to 1000°C. Only Θ-Al2O3 was detected under experimental conditions. The powder was characterized by sintering activity. Operating the processes under powder thermal treatment in the ZrO2 ― Y2O3 ― CeO2 ― Al2O3 system will allow one to produce a variety of ceramic microstructures from fine-grained to “self-reinforced.” These powders can be used in manufacturing surgical cutting tools as well as in ceramic passive bioimplants and solid electrolytes for fuel elements.  相似文献   

15.
《粉末冶金学》2013,56(32):220-235
Abstract

Cemented carbide powders milled for various times have been studied with respect to the shape and internal structure of the grains. The shrinkage of powder compacts during heat-treatment was recorded dilatometrically. The major effects of milling seem to be to alter the grain size and morphology of the powder and to form a fine dispersion of small particles of Co3O4.  相似文献   

16.
《钢铁冶炼》2013,40(5):329-337
Abstract

The viscosity of the CaO–Al2O3–MgO slag system has been measured by the rotating cylinder method up to 1823 K. The MgO content was between 0·39 and 11·33 wt-%, and the mass ratio of CaO/Al2O3 was between 0·60 and 1·28. The results indicated that both the MgO content and the mass ratio of CaO/Al2O3 have an influence on the viscosity of the slag. The effect of the mass ratio of CaO/Al2O3 is larger than that of the MgO content. The viscosity decreased with increasing MgO content and then increased. The effect of the mass ratio of CaO/Al2O3 on the viscosity was similar. The main mineralogical compositions of the slag were determined by X-ray diffraction, and their effects on viscosity were investigated. The measured results were in good agreement with those given by the Iida model.  相似文献   

17.
Cu-10Cr-3Ag (wt pct) alloy with nanocrystalline Al2O3 dispersion was prepared by mechanical alloying and consolidated by high pressure sintering at different temperatures. Characterization by X-ray diffraction and scanning electron microscopy or transmission electron microscopy shows the formation of nanocrystalline matrix grains of about 40 nm after 25 hours of milling with nanometric (<20 nm) Al2O3 particles dispersed in it. After consolidation by high pressure sintering (8 GPa at 400 °C to 800 °C), the dispersoids retain their ultrafine size and uniform distribution, while the alloyed matrix undergoes significant grain growth. The hardness and wear resistance of the pellets increase significantly with the addition of nano-Al2O3 particles. The electrical conductivity of the pellets without and with nano-Al2O3 dispersion is about 30 pct IACS (international annealing copper standard) and 25 pct IACS, respectively. Thus, mechanical alloying followed by high pressure sintering seems a potential route for developing nano-Al2O3 dispersed Cu-Cr-Ag alloy for heavy duty electrical contact.  相似文献   

18.
This paper presents the influence of sintering on the structure, morphology and compressing strength of alumina/nickel composite compacts obtained by spark plasma sintering (SPS). Al2O3/Ni composites were prepared by SPS in argon atmosphere at temperatures in the range of 1000–1200 –C with a holding time of 2, 5 and 10?minutes. The heating rate was 200 C?min?1. These composites have been characterised by X-ray diffraction, SEM and EDX. The relative density and compressive strength of the as-obtained compacts were determined. The results showed that the alumina particles are uniformly dispersed in a quasi-continuous Ni network, and there was no sign of phase changes during sintering. The maximum strength of the alumina/nickel composite with a content of 75 vol. ? Al2O3 and 25 vol. ? Ni was about 240?MPa for the samples sintered at 1200?C for 10?minutes.

Special block from the conference RoPM2017 guest edited by Ionel Chicinas, Technical University, Cluj-Napoca.  相似文献   

19.
《钢铁冶炼》2013,40(4):266-270
Abstract

The crystal structures of real and synthetic iron ore sinters were compared. In the Fe2O3-CaO-Al2O3- SiO2 system, the crystal structure of a synthetic solid solution of CaO.2Fe2O3 (CF2) was studied by X-ray powder diffraction. As the Al2O3 content in pure CF2 increased, the formation of hemicalcium ferrite increased. On the other hand, CF2 content decreased and hematite increased as the SiO2 content increased. The crystal structure of CF2 with Al2O3 and SiO2 (calcium and aluminium silicoferrite, also known as silicoferrite of calcium and aluminium, SFCA) changed from monoclinic to triclinic, and the unit cell volume decreased when the Al2O3/SiO2 ratio increased. The solubilities of Al2O3 SiO2 in CF2 were 5-7 wt-% and 2-4 wt-%, respectively at 1250°C.  相似文献   

20.
《钢铁冶炼》2013,40(7):531-538
Abstract

Pure Fe2O3 and Fe2O3 doped with 2, 4, and 6 mass% of MnO2 (>99%) compacts annealed at 1473 K for 6 h were isothermally reduced with H2 at 1073–1373 K. The O2 weight loss resulted from the reduction of compacts was continuously recorded as a function of time using thermogravimetric analysis (TGA). High pressure mercury porosimeter, optical and scanning electron microscopes, X-ray phase analysis and vibrating sample magnetometer were used to characterise both the annealed and reduced samples. In MnO2 containing samples, manganese ferrite (MnFe2O4) was identified. The rate of reduction of pure and doped compacts increased with temperature and decreased with the increase in MnO2 content. Unlike in pure compacts, the reduction of MnO2 containing samples was not completed and stopped at different extents depending on MnO2 (mass%). At initial reduction stages, the decrease in the rate was due to the presence of poorly reducible manganese ferrite (MnFe2O4) phase which was partially reduced to iron manganese oxide (FeO0.899, MnO0.101) at the final stages. The reduction mechanism was predicted from the correlation between the reduction kinetics and the structure of partially reduced samples at different temperatures. The reduction of pure and doped samples was controlled by a combined effect of interfacial chemical reaction and gaseous diffusion mechanism at their initial stages. At final stages, the interfacial chemical reaction was the rate controlling mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号