首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel anticorrosive film with a thickness of approximately 50 μm was successfully coated on an AZ31 magnesium alloy by chemical and low-heat treatments (50 °C). The film was a single-phase system of newberyite (MgHPO4•3H2O) having an orthorhombic crystal structure. The corrosion current density of the newberyite film coated on the AZ31 magnesium alloy decreased by more than two orders of magnitude as compared to that of the AZ31 magnesium alloy. The static water contact angle of the newberyite film was less than 10°. The average value of the scratch critical load for the newberyite coating was estimated to be approximately 15 mN.  相似文献   

2.
In this study, polyoxadiazole-based coatings were molecularly designed by attaching two different functional groups, i.e., diphenyl-ether and diphenyl-hexafluoropropane, in the main polymer chain for the purpose of low water permeability and eventually for high corrosion protection of AM50 magnesium alloy. Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) were used to evaluate the coating performance of the two polymers. Electrochemical experiments showed that POD-6FP (poly(4,4′-diphenyl-hexafluoropropane-1,3,4-oxadiazole)) coated alloy exhibited 3-4 orders of magnitude higher corrosion resistance as compared to the POD-DPE (poly (4,4′-diphenyl-ether-1,3,4-oxadiazole)) coated alloy. The high coating performance of the POD-6FP polymer can be attributed to the hydrophobic group attached to the polyoxadiazole chain.  相似文献   

3.
Mechanical spectroscopy of commercial AZ91 magnesium alloy   总被引:2,自引:0,他引:2  
A damping peak at around 425 K for a frequency of about 1 Hz was found and it was correlated to the characteristic grain boundary peak of magnesium. An increase in the height of the grain boundary peak appears during the temperature cycles, controlled by the decrease of solute atoms in the matrix since the appearance of a precipitation process.  相似文献   

4.
Abstract

The semiconductor properties, electronic structure and reduction susceptibility of passive films on AISI type 304 stainless steel in dilute sulphuric acid solutions have been studied by electrochemical impedance spectroscopy measurements, Mott-Schottky analysis and the photoelectrochemical technique. The passive film shows features of an amorphous or highly disordered n type semiconductor. The donor level is in the range of 1026-1027 m-3 and increases with the amplitude of ac potential. The passive film thickness increases linearly with the amplitude of the applied ac potential. The reduction susceptibility of the passive film is also decreased with the amplitude of the applied ac. The photoelectrochemical measurements also indicate that the passive film is n type semiconductor and the photcurrent is decreased after ac modulation. It might be related to the surface chromium accumulation.  相似文献   

5.
The microstructure and corrosion behavior of an extruded magnesium alloy ZK60 bumper were investigated using optical microscopy, SEM and EDS as well as potentiodynamic polarization technique. The results show that the microstructure of the component is characterized by two distinct layers: the skin with coarse grains and the interior with fine grains. Preferential attack on the interior is attributed to the macrogalvanic corrosion between the two layers with an initial potential difference. The size and distribution of the intermetallic compounds play a crucial role in pitting corrosion and intergranular corrosion.  相似文献   

6.
喷焊镍基材料切削加工过程的研究   总被引:1,自引:0,他引:1  
通过选用一批有代表性的典型刀具对喷焊镍基高温合金材料进行刀 具耐用度切削对比试验,找出了各自的耐用度公式,并且还借助于扫描电镜和电子探针观察刀具磨损区,切屑底面和工件已加工表面,由微区形貌和微区成份分析得出其刀具主要为磨粒磨损的结论,这与通常高温镍基合金材料切削时的刀具磨损规律不同。  相似文献   

7.
The semiconducting property of passive films of nitrogen-containing type 316LN stainless steels in different electrolytic media (0.5 M NaCl, borate buffer and borate buffer + 0.5 M NaCl) was investigated by electrochemical impedance spectroscopy (EIS). The nitrogen effect on the chemical composition of the passive films was investigated using X-ray photoelectron spectroscopy, (XPS). Based on capacitance results, the semiconducting parameters obtained from the Mott-Schottky plots indicated a decrease in the donor and acceptor density (ND and NA) with increase in nitrogen content, and variation in the flat band potential (EFB), depending on the electrolytic media. Thus indicating that the oxide layers of the passive film are modified by nitrogen addition. The presence of nitrogen and in the passive film was confirmed by the XPS analysis of the passive film. Cyclic polarization for pitting and repassivation corrosion studies indicated a decrease in hysteresis loop with increase in nitrogen content in 0.5 M NaCl solution. In the highest nitrogen-containing alloy (0.556 wt.% N), the hysteresis loop was small and negligible indicating that the pit initiation is minimum in this alloy. Based on the results obtained, an attempt was made to correlate the semiconducting nature of the passive films with pitting corrosion resistance.  相似文献   

8.
In this work coatings were developed on the surface of AM50 magnesium alloy using four different electrolytes containing 10 wt.% each of K3PO4 and Na3PO4 in combination with either potassium or sodium hydroxides. Electrolyte conductivity and breakdown voltage were measured in order to correlate the property of the coating to the nature of electrolyte. Further, the coatings were examined using scanning electron microscopy for surface morphology and cross sectional investigation, X-ray diffraction for phase determination, and electrochemical impedance spectroscopy for corrosion resistance evaluation. The effect of employing different ions in the electrolytes results in different surface morphologies, chemical phases and, consequently, the corrosion resistance of the coatings. The EIS results indicate the presence of porous and compact layers in the structure of the PEO coatings, whilst the overall coating resistance mainly results from the compact layer, the role of the porous layer as a barrier against corrosion is negligible. Finally, a correlation between the passive current density of the bare alloy and the corrosion resistance of the PEO coating is proposed.  相似文献   

9.
Ceramic coatings are deposited on biodegradable magnesium alloys by physical vapor deposition to reduce the electrochemical activity in the simulated physiological environment. Although an interlayer is generally used to reduce the mismatch between the hard coating and soft substrate, the effects of the interlayer on the electrochemical corrosion behavior have seldom been explored. In this work, AlOxNy ceramic coatings were deposited on AZ31 magnesium alloys with Al or Ti interlayers. Polarization tests and electrochemical impedance spectroscopy (EIS) were conducted to evaluate the corrosion resistance in the cell culture medium. The AlOxNy ceramic coating significantly improved the bio-corrosion resistance of the magnesium alloy, but the Ti interlayer accelerated the corrosion rate. In comparison, although the addition of an Al interlayer led to smaller enhancement in the surface mechanical properties of the AlOxNy coating, corrosion could be impeded effectively. Our results indicate that an Al interlayer is preferred over Ti and the corrosion failure mechanism is discussed from the perspective of defects.  相似文献   

10.
Mg–3Nd–0.2Zn–0.4Zr alloy with good mechanical properties is a new type of biodegradable magnesium alloy. In order to improve the surface stability in the initial healing stage and foster tissue growth on biomedical implants made of this Mg alloy, oxygen plasma immersion ion implantation (O-PIII) is conducted to modify the alloy surface. Although O-PIII increases the thickness of the surface oxide, no significant improvement in the surface corrosion resistance is observed. Hence, surface alloying with Al and Cr by means of high-energy ion implantation is conducted prior to O-PIII. The electrochemical data obtained in simulated body fluids, including polarization curves and electrochemical impedance spectra (EIS), reveal that the surface corrosion resistance is improved after surface alloying. Our results show that surface alloying with Cr produces the best result in this study. The improvement stems from the formation of Al or Cr-containing oxide films in the implanted layer.  相似文献   

11.
分析研究了微量Nd的添加对Mg-Al-Zn合金显微组织和高温力学性能的影响.结果表明:Nd的加入,显著细化了合金的铸态组织,同时出现了新相Al3Nd化合物.当Nd添加量为1.0%时,可使铸态Mg-8.5Al-0.5Zn合金在150℃高温下的抗拉强度达到最大值为160MPa,和未加入Nd的合金相比提高了13.2%.  相似文献   

12.
An environmental-friendly electrolyte of silicate and borate, which contained an addition agent of 1H-benzotriazole (BTA) with low toxicity (LD50 of 965 mg/kg), was used to prepare an anodized film on AZ31B magnesium alloy under the constant current density of 1.5 A/dm2 at room temperature. Effects of BTA on the properties of the anodized film were studied by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), loss weight measurement, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), respectively. The results demonstrated that anodized growth process, surface morphology, thickness, phase structure and corrosion resistance of the anodized film were strongly dependant on the BTA concentration, which might be attributed to the formation of an BTA adsorption layer on magnesium substrate surface. When the BTA concentration was 5 g/L in the electrolyte, a compact and thick anodized film could provide excellent corrosion resistance for AZ31B magnesium alloy.  相似文献   

13.
Four 22% Cr duplex stainless steel alloys containing varying nickel contents of approximately 5%, 7%, 9% and 13% were melted in a vacuum induction furnace, hot rolled, solution annealed and water quenched. Their corrosion behaviour was investigated in sulphuric acid and sodium chloride solutions using potentiodynamic polarization and chronoamperometric techniques. Increasing nickel contents have an appreciable influence on the observed corrosion behaviour. Polarization curves show similarities in the uniform corrosion behaviour of the alloys in the various solutions, but significant differences in their pitting resistance in chloride environments. Alloy 2209 (22% Cr - 9% Ni) generally exhibited the highest resistance to uniform corrosion, while alloy 2213 (22% Cr - 13% Ni) displayed the best pitting corrosion resistance. X-ray diffraction analysis of the surfaces of the alloys after corrosion in the different media revealed different corrosion products. Scanning electron micrographs revealed that the alloys were differently attacked by chloride ions, with different pit depths and morphologies. The corrosion behaviour exhibited by the alloys was attributed to the influence of nickel on phase modification, microstructural refinement, and the types of films formed in different environments. Uniform corrosion behaviour of the alloys was concluded to be predominantly controlled by phase composition and ratio, while pitting resistance was chiefly controlled by an alloy’s nickel contents.  相似文献   

14.
An investigation on strain amplitude-dependent internal friction (IF) of an as-cast high damping Mg-7 wt% Ni alloy was carried out. In the range of our tested strain amplitudes, whether the strain amplitude is increasing or decreasing, the strain amplitude-dependent IF curve can be divided into two stages: one is the strain amplitude weakly dependent part and the other is the strain amplitude strongly dependent part. However, after several cyclic vibrations, the IF values measured during the strain amplitude increasing are smaller than those obtained during the strain amplitude decreasing. The phenomenon is also observed at 100 ℃. Partial dislocations generate a short-range slip under the cyclic stress to be responsible for it.  相似文献   

15.
X‐ray photoelectron spectroscopy (XPS), a powerful method for investigating composition and thickness of thin films in the nanometer range, has been used to characterize the surface of two stainless steels with different bulk composition, DIN 1.4301 (18%Cr 8%Ni) and DIN 1.4529 (20%Cr 25%Ni 6%Mo) after mechanical polishing and after potentiostatic passivation in a wide range of potentials in sulfate solutions at different pHs. The XPS results confirm that the passive film thickness increases with applied potential, its composition is enriched in chromium oxy‐hydroxide after immersion in acidic solutions and polarization at low potentials whereas oxidized nickel is depleted. Special emphasis is given in this paper to the composition of the metal phase underneath the passive film. It is shown that the composition of the interface is strongly enriched in nickel for both stainless steels being 28 ± 2 wt% Ni versus a value of 8% in the bulk and 45 ± 2 wt% versus 25 wt%Ni in the bulk, respectively. The composition of the interface for a given alloy remains unchanged in a wide range of conditions of passive film formation such as pH, applied potential, passivation time. These results are discussed with respect to the influence of the interface composition on the corrosion rate of alloys in the passive state and on their pitting resistance.  相似文献   

16.
镁合金的表面处理及其发展趋势   总被引:40,自引:12,他引:40  
综述了镁合金的化学转化膜,阳极氧化,微弧氧化以及化学镀等表面处理方法,总结了镁合金防护中的发展趋势。  相似文献   

17.
镁及其合金表面处理研究现状   总被引:1,自引:5,他引:1  
吴敏  吕柏林  梁平 《表面技术》2005,34(5):13-15,90
镁及其合金由于具有优良的性能而得到了广泛应用,但由于该合金非常活跃,很容易被腐蚀,而使其应用也受到了限制,因此可以通过适当的表面处理方法来改善镁合金的耐腐蚀性能.较系统地综述了镁合金表面处理的研究现状,介绍了以电镀和化学镀为主要内容的金属镀层处理,以普通阳极氧化和微弧氧化为主要内容的阳极氧化法以及化学转化法和高能束技术在镁合金表面处理中的应用.经这些方法处理后镁合金的耐蚀性得到了明显提高.  相似文献   

18.
The corrosion protection afforded by a cerium conversion coating, formed by immersion in a solution containing rare earth salt and hydrogen peroxide, on pure magnesium and two magnesium alloys, AZ91 and AM50, has been studied. The effect of HCl pre-treatments on the morphology and on the corrosion resistance of the cerium conversion layer was investigated. A thicker and more homogeneous distribution of the conversion coating was obtained when the sample surface was pre-treated with acid. Higher amounts of cerium on the surface of the pre-treated samples were detected. The cerium conversion coating increased the corrosion resistance of the alloys because it ennobled the corrosion potential and decreased both the anodic and cathodic current. The acid pre-treatment further increased the corrosion resistance of the coated alloys. After five days of immersion in chloride environment the untreated samples showed localized corrosion while the chemical conversion coated samples appeared unaffected.  相似文献   

19.
The influences of alloyed molybdenum and molybdate addition on the corrosive properties and passive film composition of stainless steels were evaluated. Anodic polarization measurement, solution analysis, and surface analysis were conducted to investigate the influences. The roles of alloyed molybdenum and molybdate addition were observed to vary with the environment. In addition, the role of molybdate addition depended on the presence of nitrogen in the alloy. The composition of the passive film formed by alloyed molybdenum was found to be different from that of the film formed by molybdate addition. These observations suggest that when the thermodynamical condition in the film is suitable for the formation of molybdate, it first forms in the film and then later partially dissolves into a solution and partially evaporates.  相似文献   

20.
The potentiodynamic technique has been used to study the general and localized corrosion resistance of high-alloyed stainless steels (UNS N02031 and UNS R20033) and nickel (UNS N02205) at different temperatures (from 25 °C to 80 °C) in a heavy brine Lithium Bromide solution.The engineering question of concern is the compatibility of the LiBr fluid with the structural materials of refrigeration systems which use absorption technology. The results of potentiodynamic polarization studies indicate excellent corrosion resistance for stainless steels in LiBr solution at room temperature and no big differences at temperatures above 50 °C. In the temperature range of 25-80 °C, a linear relationship exists between logarithmic of corrosion rate and reciprocal of absolute temperature (Arrhenius plot). The linear plots showed that the mechanism of the corresponding passivation process is the same for the three investigated alloys, essentially due to the presence of nickel. Tests indicated that stainless steels UNS N02031 and UNS R20033 were the most suitable for use to be used in the construction of absorption units for refrigeration purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号