首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A 200-kDa guanine nucleotide-exchange protein (p200 or GEP) for ADP-ribosylation factors 1 and 3 (ARF1 and ARF3) that was inhibited by brefeldin A (BFA) was purified earlier from cytosol of bovine brain cortex. Amino acid sequences of four tryptic peptides were 47% identical to that of Sec7 from Saccharomyces cerevisiae, which is involved in vesicular trafficking in the Golgi. By using a PCR-based procedure with two degenerate primers representing sequences of these peptides, a product similar in size to Sec7 that contained the peptide sequences was generated. Two oligonucleotides based on this product were used to screen a bovine brain library, which yielded one clone that was a partial cDNA for p200. The remainder of the cDNA was obtained by 5' and 3' rapid amplification of cDNA ends (RACE). The ORF of the cDNA encodes a protein of 1,849 amino acids (approximately 208 kDa) that is 33% identical to yeast Sec7 and 50% identical in the Sec7 domain region. On Northern blot analysis of bovine tissues, a approximately 7.4-kb mRNA was identified that hybridized with a p200 probe; it was abundant in kidney, somewhat less abundant in lung, spleen, and brain, and still less abundant in heart. A six-His-tagged fusion protein synthesized in baculovirus-infected Sf9 cells demonstrated BFA-inhibited GEP activity, confirming that BFA sensitivity is an intrinsic property of this ARF GEP and not conferred by another protein component of the complex from which p200 was originally purified.  相似文献   

2.
ADP-ribosylation factors (ARFs) are 20-kDa guanine nucleotide-binding proteins and are active in the GTP-bound state and inactive with GDP bound. ARF-GTP has a critical role in vesicular transport in several cellular compartments. Conversion of ARF-GDP to ARF-GTP is promoted by a guanine nucleotide-exchange protein (GEP). We earlier reported the isolation from bovine brain cytosol of a 700-kDa protein complex containing GEP activity that was inhibited by brefeldin A (BFA). Partial purification yielded an approximately 60-kDa BFA-insensitive GEP that enhanced binding of ARF1 and ARF3 to Golgi membranes. GEP has now been purified extensively from rat spleen cytosol in a BFA-insensitive, approximately 55-kDa form. It activated class I ARFs (ARFs 1 and 3) that were N-terminally myristoylated, but not nonmyristoylated ARFs from class-I, II, or III. GEP activity required MgCl2. In the presence of 0.6-0.8 mM MgCl2 and 1 mM EDTA, binding of guanosine 5'-[gamma[35S]thio]triphosphate ([35S]GTP gamma S) by ARF1 and ARF3 was equally high without and with GEP. At higher Mg2+ concentrations, binding without GEP was much lower; with 2-5 mM MgCl2, GEP-stimulated binding was maximal. The rate of GDP binding was much less than that of GTP gamma S with and without GEP. Phospholipids were necessary for GEP activity; phosphatidylinositol was more effective than phosphatidylserine, and phosphatidic acid was less so. Other phospholipids tested were ineffective. Maximal effects required approximately 200 microM phospholipid, with half-maximal activation at 15-20 microM. Release of bound [35S]GTP gamma S from ARF3 required the presence of both GEP and unlabeled GTP or GTP gamma S; GDP was much less effective. This characterization of the striking effects of Mg2+ concentration and specific phospholipids on the purified BFA-insensitive ARF GEP should facilitate experiments to define its function in vesicular transport.  相似文献   

3.
ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins that participate in vesicular transport in the Golgi and other intracellular compartments and stimulate cholera toxin ADP-ribosyltransferase activity. ARFs are active in the GTP-bound form; hydrolysis of bound GTP to GDP, possibly with the assistance of a GTP hydrolysis (GTPase)-activating protein results in inactivation. Exchange of GDP for GTP and reactivation were shown by other workers to be enhanced by Golgi membranes in a brefeldin A-sensitive reaction, leading to the proposal that the guanine nucleotide-exchange protein (GEP) was a target of brefeldin A. In the studies reported here, a soluble GEP was partially purified from bovine brain. Exchange of nucleotide on ARFs 1 and 3, based on increased ARF activity in a toxin assay and stimulation of binding of guanosine 5'-[gamma-[35S]thio]triphosphate, was dependent on phospholipids, with phosphatidylserine being more effective than cardiolipin. GEP appeared to increase the rate of nucleotide exchange but did not affect the affinity of ARF for GTP. Whereas the crude GEP had a size of approximately 700 kDa, the partially purified GEP behaved on Ultrogel AcA 54 as a protein of 60 kDa. With purification, the GEP activity became insensitive to brefeldin A, consistent with the conclusion that, in contrast to earlier inferences, the exchange protein is not itself the target of brefeldin A.  相似文献   

4.
Phagocytosis requires extension of F-actin-rich pseudopods and is accompanied by membrane fusion events. Members of the ARF family of GTPases are essential for many aspects of membrane trafficking. To test a role for this family of proteins in Fcgamma receptor-mediated phagocytosis, we utilized the fungal metabolite brefeldin A (BFA). The addition of 100 microM BFA to a subclone of RAW 264.7 macrophages disrupted the appearance and function of the Golgi apparatus as indicated by altered immunofluorescent distribution of beta-COP and reduced efflux of BODIPY C5-ceramide, a phospholipid that normally accumulates in the Golgi apparatus. In contrast, BFA had no effect on phagocytosis of IgG-coated erythrocytes. These results suggested that activation of BFA-sensitive ARFs is not required for phagocytosis. ARF6 is unique among members of the ARF family in that its membrane association is unaffected by BFA. Expression of ARF6 mutants defective in either GTP hydrolysis (Q67L) or binding (T27N) inhibited phagocytosis of IgG-coated erythrocytes and attenuated the focal accumulation of F-actin beneath the test particles. These results indicate a requirement for ARF6 in Fcgamma receptor-mediated phagocytosis and suggest that ARF6 is an important mediator of cytoskeletal alterations after Fcgamma receptor activation.  相似文献   

5.
Nucleotide exchange on ARF mediated by yeast Gea1 protein   总被引:1,自引:0,他引:1  
The ADP-ribosylation factor ARF is a small GTP-binding protein that is involved in the transport of vesicles between the endoplasmic reticulum (ER) and Golgi complex and within the Golgi complex itself. ARF cycles between inactive and membrane-associated active forms as a result of exchange of bound GDP for GTP; the GTP-bound form is an essential participant in the formation of transport vesicles. This nucleotide exchange is inhibited by the fungal metabolite brefeldin A (BFA). Here we identify a protein (Gea1) from Saccharomyces cerevisiae that is a component of a complex possessing guanine-nucleotide-exchange activity for ARF. We show that the activity of the complex is sensitive to brefeldin A and that Gea1 function is necessary for ER-Golgi transport in vivo. Gea1 contains a domain that is similar to a domain of Sec7, a protein necessary for intra-Golgi transport. We propose that Gea1 and ARNO, a human protein with a homologous Sec7 domain, are members of a new family of ARF guanine-nucleotide exchange factors.  相似文献   

6.
Cellular levels of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) are rapidly elevated in response to activation of growth factor receptor tyrosine kinases. This polyphosphoinositide binds the pleckstrin homology (PH) domain of GRP1, a protein that also contains 200 residues with high sequence similarity to a segment of the yeast Sec7 protein that functions as an ADP ribosylation exchange factor (ARF) (Klarlund, J., Guilherme, A., Holik, J. J., Virbasius, J. V., Chawla, A., and Czech, M. P. (1997) Science 275, 1927-1930). Here we show that dioctanoyl PtdIns(3,4,5)P3 binds the PH domain of GRP1 with a Kd = 0.5 microM, an affinity 2 orders of magnitude greater than dioctanoyl-PtdIns(4,5)P2. Further, the Sec7 domain of GRP1 is found to catalyze guanine nucleotide exchange of ARF1 and -5 but not ARF6. Importantly, PtdIns(3,4,5)P3, but not PtdIns(4,5)P2, markedly enhances the ARF exchange activity of GRP1 in a reaction mixture containing dimyristoylphosphatidylcholine micelles, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid, and a low concentration of sodium cholate. PtdIns(3,4,5)P3-mediated ARF nucleotide exchange through GRP1 is selectively blocked by 100 microM inositol 1,3,4,5-tetrakisphosphate, which also binds the PH domain of GRP1. Taken together, these data are consistent with the hypothesis that selective recruitment of GRP1 to PtdIns(3,4,5)P3 in membranes activates ARF1 and -5, known regulators of intracellular membrane trafficking.  相似文献   

7.
The small G protein ARF1 is involved in the coating of vesicles that bud from the Golgi compartments. Its activation is controlled by as-yet unidentified guanine-nucleotide exchange factors. Gea1, the first ARF exchange factor to be discovered in yeast, is a large protein containing a domain of homology with Sec7, another yeast protein that is also involved in secretion. Here we characterized a smaller human protein (relative molecular mass 47K) named ARNO, which contains a central Sec7 domain that promotes guanine-nucleotide exchange on ARF1. ARNO also contains an amino-terminal coiled-coil motif and a carboxy-terminal pleckstrin-homology (PH) domain. The PH domain mediates an enhancement of ARNO exchange activity by negatively charged phospholipid vesicles supplemented with phosphatidylinositol bisphosphate. The exchange activity of ARNO is not inhibited by brefeldin A, an agent known to block vesicular transport and inhibit the exchange activity on ARF1 in cell extracts. This suggests that a regulatory component which is sensitive to brefeldin A associates with ARNO in vivo, possibly through the amino-terminal coiled-coil. We propose that other proteins with a Sec7 domain regulate different members of the ARF family.  相似文献   

8.
The Sec7 domain of the guanine nucleotide exchange factor ARNO (ARNO-Sec7) is responsible for the exchange activity on the small GTP-binding protein ARF1. ARNO-Sec7 forms a stable complex with the nucleotide-free form of [Delta17]ARF1, a soluble truncated form of ARF1. The crystal structure of ARNO-Sec7 has been solved recently, and a site-directed mutagenesis approach identified a hydrophobic groove and an adjacent hydrophilic loop as the ARF1-binding site. We show that Glu156 in the hydrophilic loop of ARNO-Sec7 is involved in the destabilization of Mg2+ and GDP from ARF1. The conservative mutation E156D and the charge reversal mutation E156K reduce the exchange activity of ARNO-Sec7 by several orders of magnitude. Moreover, [E156K]ARNO-Sec7 forms a complex with the Mg2+-free form of [Delta17]ARF1-GDP without inducing the release of GDP. Other mutations in ARNO-Sec7 and in [Delta17]ARF1 suggest that prominent hydrophobic residues of the switch I region of ARF1 insert into the groove of the Sec7 domain, and that Lys73 of the switch II region of ARF1 forms an ion pair with Asp183 of ARNO-Sec7.  相似文献   

9.
Cadherins are homotypic adhesion molecules that classically mediate interactions between cells of the same type in solid tissues. In addition, E-cadherin is able to support homotypic adhesion of epidermal Langerhans cells to keratinocytes (Tang, A., Amagai, M., Granger, L. G., Stanley, J. R. & Udey, M. C. (1993) Nature (London) 361, 82-85) and heterotypic adhesion of mucosal epithelial cells to E-cadherin-negative intestinal intraepithelial T lymphocytes. Thus, we hypothesized that cadherins may play a wider role in cell-to-cell adhesion events involving T lymphocytes. We searched for a cadherin or cadherins in T lymphocytes with a pan-cadherin antiserum and antisera against alpha- or beta-catenin, molecules known to associate with the cytoplasmic domain of cadherins. The anti-beta-catenin antisera coimmunoprecipitated a radiolabeled species in T-lymphocyte lines that had a molecular mass of 129 kDa and was specifically immunoblotted with the pan-cadherin antiserum. Also, the pan-cadherin antiserum directly immunoprecipitated a 129-kDa radiolabeled species from an 125I surface-labeled Jurkat human T-cell leukemic cell line. After V8 protease digestion, the peptide map of this pan-cadherin-immunoprecipitated, 129-kDa species exactly matched that of the 129-kDa species coimmunoprecipitated with the beta-catenin antiserum. These results demonstrate that T lymphocytes express a catenin-associated protein that appears to be a member of the cadherin superfamily and may contribute to T cell-mediated immune surveillance.  相似文献   

10.
Brefeldin A (BFA), an isoprenoid fungal metabolite, dramatically disrupts intracellular protein transport and protein secretion. BFA protects cells from the cytotoxicity of a plant toxin, ricin or pseudomonas toxin, but not that of diphtheria toxin (Yoshida et al., 1991. Expt. Cell Res., 192: 389-395.). In this study, we examined whether BFA could differentially change the cytotoxicity of ricin between BFA-sensitive cells and BFA-resistant cells. As a BFA-resistant cell line, we used a resistant cell line, KB/BF2-2, derived from BFA-sensitive human cancer KB cells. BFA treatment caused the disappearance of typical Golgi cisternae and the concomitant appearance of dilated vesicles in the cytoplasm in KB cells. By contrast, KB/BF2-2 cells had already altered Golgi structures with poor development of cisternae and also many vesicles in the absence of BFA, and BFA treatment did not further induce the morphological changes. Although a plasma membrane-specific marker protein, alpha-adaptin, was localized similarly in KB/BF2-2 as KB, Golgi specific markers such as beta-cop and gamma-adaptin were distributed in the cytoplasmic small vesicles as well as Golgi compartments in KB/BF2-2 cells in the absence of BFA, and the mutant cells showed no apparent changes in the distribution even when exposed to BFA. Ricin inhibited protein synthesis in KB and KB/BF2-2 to similar levels while pretreatment of KB cells with BFA at 0.1 microgram/ml almost completely reversed the inhibitory effect of ricin. By contrast, the pre-exposure of KB/BF2-2 cells to 1.0 microgram/ml BFA only partially rescued the ricin-induced inhibition of protein synthesis. Exposure to BFA at 30 min before ricin addition or at 0 min with ricin rescued the protein synthesis inhibition, but no rescue occurred when BFA was added 30 min after ricin addition. BFA could not rescue the protein synthesis inhibition by another toxin, diphtheria toxin. Our results suggest that BFA-resistant mutation causes a specific change in the endocytic membrane traffic of ricin in human cells, and also that cytotoxicity of diphtheria toxin does not share a common pathway of the intracellular transport with that of ricin.  相似文献   

11.
Proteins in both the cytosol and plasma membrane are needed to reconstitute cell-free phospholipase D activity from phagocytes (Olson, S., Bowman, E. P., and Lambeth, J. D. (1991) J. Biol. Chem. 266, 17236-17242); membrane factors include a small GTP-binding protein in the Rho family (Bowman, E., Uhlinger, D. J., and Lambeth, J. D. (1993) J. Biol. Chem. 268, 21509-21512). ADP-ribosylation factor (ARF) was recently implicated as the cytosolic factor, as it activates phospholipase D in HL-60 membranes. Herein, we show that ion exchange chromatography separates ARF from the major phospholipase D-stimulating cytosolic factor. Both bovine brain ARF and recombinant human ARF-1 stimulated a small amount of phospholipase D activity in the absence of cytosol (about 10% of the response seen with cytosol). With a high concentration of ARF-depleted cytosol, ARF did not further activate. However, at low cytosol, ARF caused marked activation. Thus, ARF synergizes with the cytosolic factor in phospholipase D activation.  相似文献   

12.
The human and rat homologues of a new member of the ADP-ribosylation factor (ARF) family of 21-kDa GTP-binding proteins, termed Arl3, were identified as an expressed sequence tag (human) and as a product of polymerase chain reaction amplification using degenerate probes derived from conserved sequences in members of the ARF family (rat). Alignments of the full-length open reading frames of the human and rat homologues revealed the encoded proteins to be over 97% identical to each other and 43% identical to human ARF1. Northern blots of mRNA from seven human tissues and four rat tissues revealed the presence of a ubiquitous band of about 1 kilobase in length that hybridized with the corresponding Arl3 probes. A number of human tumor cell lines expressed Arl3, as determined by immunoblotting with an Arl-specific antibody, raised against a peptide derived from the human Arl3 sequence. The level of Arl3 expressed in these cell lines was on the order of 0.01% of total cell protein. Purified recombinant human Arl3 was shown to bind guanine nucleotides but lacks ARF activity and intrinsic or ARF GTPase-activating protein-stimulated GTPase activity. In contrast to ARF proteins, the Arl3 protein has reduced dependence on phospholipids and magnesium for guanine nucleotide exchange. Thus, Arl3 is a ubiquitously expressed GTP-binding protein in the ARF family with distinctive biochemical properties consistent with its having unique, but unknown, role(s) in cell physiology.  相似文献   

13.
We previously reported the purification of a UDP-N-acetylhexosamine (UDP-HexNAc) pyrophosphorylase from pig liver that catalyzed the synthesis of both UDP-GlcNAc and UDP-GalNAc from UTP and the appropriate HexNAc-1-P (Szumilo, T., Zeng, Y., Pastuszak, I., Drake, R., Szumilo, H., and Elbein, A. D. (1996) J. Biol. Chem. 271, 13147-13154). Both sugar nucleotides were synthesized at nearly the same rate, although the Km for GalNAc-1-P was about 3 times higher than for GlcNAc-1-P. Based on native gels and SDS-polyacrylamide gel electrophoresis, the enzyme appeared to be a dimer of 120 kDa composed of two subunits of about 57 and 64 kDa. Three peptides sequenced from the 64-kDa protein and two from the 57-kDa protein showed 100% identity to AGX1, a 57-kDa protein of unknown function from human sperm. An isoform called AGX2 is identical in sequence to AGX1 except that it has a 17-amino acid insert near the carboxyl terminus. We expressed the AGX1 and AGX2 genes in Escherichia coli. The protein isolated from the AGX1 clone comigrated on SDS gels with the liver 57-kDa pyrophosphorylase subunit and was 2-3 times more active with GalNAc-1-P than with GlcNAc-1-P. On the other hand, the protein from the AGX2 clone migrated with the liver 64-kDa pyrophosphorylase subunit and had 8-fold better activity with GlcNAc-1-P than with GalNAc-1-P. These results indicate that insertion of the 17-amino acid peptide modifies the specificity of the pyrophosphorylase from synthesis of UDP-GalNAc to synthesis of UDP-GlcNAc.  相似文献   

14.
A 127-kDa protein was identified as a component of the H+/oligopeptide transport system in brush-border membrane vesicles from rabbit small intestine by photoaffinity labeling with [3H]cephalexin and further photoreactive beta-lactam antibiotics and dipeptides. Reconstitution of stereospecific transport activity revealed the involvement of the 127-kDa protein in H+-dependent transport of oligopeptides and orally active alpha-amino-beta-lactam antibiotics (Kramer et al., Eur. J. Biochem. 204 (1992) 923-930). H+-Dependent transport activity was found in all segments of the small intestine concomitantly with the specific labeling of the 127-kDa protein. By enzymatic deglycosylation, fragments of Mr 116 and 95 kDa were obtained from the 127-kDa protein with endoglucosidase F and N-glycanase, whereas with endoglucosidase H, a fragment of Mr 116 kDa was formed. These findings indicate that the photolabeled 127-kDa protein is a microheterogenous glycoprotein. Surprisingly, it was found that the solubilized and purified 127-kDa protein showed enzymatic sucrase and isomaltase activity. Inhibition of the glucosidase activities with the glucosidase inhibitor HOE 120 influenced neither H+/oligopeptide transport nor photoaffinity labeling of the 127-kDa protein. With polyclonal antibodies raised against the purified 127-kDa protein, a coprecipitation of sucrase activity and the photolabeled 127-kDa beta-lactam antibiotic binding protein occurred. Target size analysis revealed a functional molecular mass of 165+/-17 kDa for photoaffinity labeling of the 127-kDa protein, suggesting a homo- or heterodimeric functional structure of the 127-kDa protein in the brush-border membrane. These findings indicate that the H+/oligopeptide binding protein of Mr 127000 is closely associated with the sucrase/isomaltase complex in the enterocyte brush-border membrane.  相似文献   

15.
The possible role of ADP-ribosylation factor (ARF)-activated and constitutive phospholipase D (PLD) activity in regulated exocytosis of preformed secretory granules in adrenal chromaffin and PC12 cells was examined. With use of digitonin-permeabilised cells, the effect of GTP analogues and exogenous ARF1 on PLD activity was determined. No evidence was seen for ARF-stimulated PLD activity in these cell types. Exocytosis from cytosol-depleted permeabilised chromaffin cells was not increased by adding recombinant nonmyristoylated or myristoylated ARF1, and exocytosis from both cell types was resistant to brefeldin A (BFA). Addition of bacterial PLD with demonstrably high activity in permeabilised chromaffin cells did not increase exocytosis in cytosol-depleted chromaffin cells. Diversion of PLD activity from production of phosphatidic acid (PA) due to the presence of 4% ethanol did not inhibit exocytosis triggered by Ca2+ or poorly hydrolysable GTP analogues in permeabilised chromaffin or PC12 cells. These results indicate that exocytosis in these cell types does not appear to require a BFA-sensitive ARF and the triggering of exocytosis does not require PLD activity and formation of PA. These findings rule out a general requirement for PLD activity during regulated exocytosis.  相似文献   

16.
In eukaryotic cells a number of different proteins with important regulatory functions are reversibly methyl-esterified at carboxyl-terminal prenylcysteine residues. These proteins include the low molecular weight GTP-binding proteins, the gamma-subunit of the heterotrimeric G-proteins, and the nuclear lamins. The methylating enzymes that catalyze this type of carboxyl methylation reaction are integral membrane proteins, and the methylated protein products tend to be membrane-associated. Analyses of protein carboxyl methylation in a wide range of vertebrate tissues revealed a major carboxyl-methylated protein that was clearly distinct from those that are modified at prenylcysteine groups (Volker, C., Miller, R.A., McCleary, W.R., Rao, A., Poenie, M., Backer, J.M., and Stock, J.B. (1991) J. Biol. Chem. 266, 21515-21522). This M(r) = 36,000 protein is localized to the cytosol. Unlike the prenylcysteine methyltransferases, the enzyme that catalyzes the methylation of the 36-kDa protein is found in the cytosol. The 36-kDa methylated protein has been purified from bovine brain. Sequence analysis of several peptides clearly shows that the protein is the catalytic subunit of protein phosphatase 2A. A soluble 40-kDa methyltransferase that catalyzes the reaction has also been purified.  相似文献   

17.
Budding of transport vesicles in the Golgi apparatus requires the recruitment of coat proteins and is regulated by ADP ribosylation factor (ARF) 1. ARF1 activation is promoted by guanine nucleotide exchange factors (GEFs), which catalyze the transition to GTP-bound ARF1. We recently have identified a human protein, ARNO (ARF nucleotide-binding-site opener), as an ARF1-GEF that shares a conserved domain with the yeast Sec7 protein. We now describe a human Sec7 domain-containing GEF referred to as ARNO3. ARNO and ARNO3, as well as a third GEF called cytohesin-1, form a family of highly related proteins with identical structural organization that consists of a central Sec7 domain and a carboxy-terminal pleckstrin homology domain. We show that all three proteins act as ARF1 GEF in vitro, whereas they have no effect on ARF6, an ARF protein implicated in the early endocytic pathway. Substrate specificity of ARNO-like GEFs for ARF1 depends solely on the Sec7 domain. Overexpression of ARNO3 in mammalian cells results in (i) fragmentation of the Golgi apparatus, (ii) redistribution of Golgi resident proteins as well as the coat component beta-COP, and (iii) inhibition of SEAP transport (secreted form of alkaline phosphatase). In contrast, the distribution of endocytic markers is not affected. This study indicates that Sec7 domain-containing GEFs control intracellular membrane compartment structure and function through the regulation of specific ARF proteins in mammalian cells.  相似文献   

18.
Sec7-related guanine nucleotide exchange factors (GEFs) initiate vesicle budding from the Golgi membrane surface by converting the GTPase ARF to a GTP-bound, membrane-associated form. Here we report the crystal structure of the catalytic Sec7 homology domain of Arno, a human GEF for ARF1, determined at 2.2 angstroms resolution. The Sec7 domain is an elongated, all-helical protein with a distinctive hydrophobic groove that is phylogenetically conserved. Structure-based mutagenesis identifies the groove and an adjacent conserved loop as the ARF-interacting surface. The sites of Sec7 domain interaction on ARF1 have subsequently been mapped, by protein footprinting experiments, to the switch 1 and switch 2 GTPase regions, leading to a model for the interaction between ARF GTPases and Sec7 domain exchange factors.  相似文献   

19.
The first type III module of fibronectin (Fn) contains a cryptic site that binds Fn and its N-terminal 29 kDa fragment and is thought to be important for fibril formation (Morla, A., Zhang, Z., and Ruoslahti, E. (1994) Nature 367, 193-196; Hocking, D. C., Sottile, J. , and McKeown-Longo, P. J. (1994) J. Biol. Chem. 269, 19183-19191). A synthetic 31-mer peptide (NAPQ ... TIPG) derived from the middle of domain III1 was also shown to bind Fn, but the site of its interaction was not determined (Morla, A., and Ruoslahti, E. (1992) J. Cell Biol. 118, 421-429). By affinity chromatography on peptide-agarose, we tested a set of fragments representing the entire light chain of plasma Fn. Only 40-kDa Hep-2 (III12-15) failed to bind. The concentration of urea required for peak elution of Fn and the other fragments decreased in the order Fn > 42-kDa GBF (I6II1-2I7-9) > 19-kDa Fib-2 (I10-12) > 110-kDa CBF(III2-10) > 29-kDa Fib-1 (I1-I5). Neither Fn nor any of the fragments bound immobilized intact III1, confirming the cryptic nature of this activity. In an effort to detect interactions between other Fn domains, all fragments were coupled to Sepharose, and each fragment was tested on each affinity matrix before and after denaturation. The only interaction detected was that of fluid phase III1 with immobilized denatured 110-kDa CBF and 40-kDa Hep-2, both of which contain type III domains. Analysis of subfragments revealed this activity to be dominated by domains III7 and III15. Fn itself did not bind to the denatured fragments. Thus, domain III1 contains two cryptic "self-association sites," one that is buried in the core of the fold but recognizes many Fn fragments when presented as a peptide and another that is concealed in Fn but exposed in the native isolated domain and recognizes cryptic sites in two other type III domains. These interactions between type III domains could play an important role in assembly of Fn multimers in the extracellular matrix.  相似文献   

20.
The human cytomegalovirus glycoprotein B gene (gB; gpUL55) was truncated at amino acid 692 and recombined into Autographa californica nuclear polyhedrosis virus (baculovirus). Infection of insect cells with the recombinant baculovirus resulted in high-level expression and secretion of the truncated gB protein (gB-S) into the culture medium. Purification of gB-S by monoclonal antibody affinity chromatography yielded a protein of ca. 200 kDa. Characterization of the 200-kDa purification product indicated that the recombinant gB protein retained many structural and functional features of the viral gB. Comparison of electrophoretic migration patterns in reduced versus nonreduced protein samples and immune blotting analysis with antibodies specific for the amino or carboxy-terminus of gB demonstrated that the recombinant protein was composed of disulfide linked 69 kDa amino terminal and 35-kDa carboxy-terminal fragments. In addition, recognition of the 200-kDa gB-S by a conformational-dependent, oligomer-specific monoclonal antibody suggested that gB-S was properly folded and dimeric. Like the viral gB, gB-S had heparin binding ability. One heparin binding site was found to reside within the 35-kDa carboxy-terminal fragment (aa 492-692). Heparin binding was abolished when gB-S was denatured. These data suggest that gB contains a novel heparin binding motif that is at least partially conformational dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号