首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In Radio Frequency IDentification (RFID) system, one of the most important issues that affect the data integrity is the collision resolution between the tags when these tags transmit their data to reader. In majority of tag anti-collision algorithm, Dynamic Framed Slotted Aloha (DFSA) has been employed as a popular collision resolution algorithm to share the medium when multiple tags respond to the reader’s signal command. According to previous works, the performance of DFSA algorithm is optimal when the frame size equals to the number of un-identified tags inside the interrogation zone. However, based on our research results, when the frame size equals to number of tags, collision occurs frequently, and this severely affects the system performance because it causes power consumption and longer tag reading time. Since the proper choice of the frame size has a great influence on overall system performance, in this paper we develop an analytical model to study the system throughput of DFSA based RFID systems, and then we use this model to search for an optimal frame size that maximizes the system throughput based on current number of un-identified tags. In addition to theoretical analysis, simulations are conducted to evaluate its performance. Comparing with the traditional DFSA anti-collision algorithm, the simulation results show that the proposed scheme reaches better performance with respect to the tag collision probability and tag reading time.  相似文献   

2.
Radio frequency identification suffers from tag collision issue. ALOHA‐based algorithms are useful and practical groups of tag anti‐collision algorithm among others. Some standards such as EPCglobal Class‐1 Generation‐2 use some kind of dynamic framed slotted ALOHA (DFSA) to cope with tag collision. DFSA efficiency depends on estimating the number of unidentified tags in each identification cycle accurately. So tag estimation is one of the challenging issues in DFSA. In this paper, we use Manchester coding to compute the lower bound of collided tags in a frame and then add α as an additional value to computed value according to the difference between optimal number of collision slots and calculated number of collision slots. Then, we evaluate and compare our method with other proposed methods.  相似文献   

3.
苏健  韩雨  骆忠强  谢良波  文光俊 《电子学报》2015,43(8):1651-1655
动态帧时隙ALOHA(DFSA)算法是一种应用广泛的防碰撞技术,主要用于解决超高频(UHF)射频识别系统(RFID)中的标签碰撞问题.在DFSA算法中,读写器需要准确估计剩余标签数并设定一个新的帧长度来识别这些标签.因此,碰撞检测(CD)和标签剩余数估计在DFSA中起着关键性的作用.现有的碰撞检测方法并不能足够有效的用于检测碰撞并导致识别性能的下降.为了减少计算量和提高识别性能,本文提出了一种有效的防碰撞算法,该算法结合了碰撞检测和待识别标签数估计方法,使得性能更加高效.理论分析和仿真结果表明,该算法的性能要优于现有的同类算法,这非常有助于设计一种快速而高效的读写器.  相似文献   

4.
一种基于不等长时隙的射频识别防碰撞算法   总被引:1,自引:0,他引:1  
该文提出了一种基于不等长时隙的射频识别(Radio Frequency Identification, RFID)动态帧时隙ALOHA (Dynamic Framed-Slotted ALOHA, DFSA)防碰撞算法。算法考虑到大量碰撞时隙和空闲时隙对系统效率的影响,采用帧内时隙长度不等的优化策略,由时隙优化参数和未读标签数确定帧长,通过优化的切比雪夫不等式法进行标签估计,并基于马尔科夫链分析标签识别过程,来实现读取周期的控制。分析和仿真结果表明,该算法比时隙优化前的DFSA算法效率更高,平均识别时间更短,标签数估计比下限值法、Schoute法和碰撞率法更准确。  相似文献   

5.
RFID tags are used for varied applications in large numbers. Human Tracking is one such important application wherein the RFID system detects the presence of a tag in a dense tag environment. Quick estimation of the number of tags in the field at a desired level of accuracy is one of the most common requirements in the present scenario. Identification of tags has become a critical area which need more time and unsuitable in many situations; especially where tag set is dense. We introduce a novel medium access control (MAC) protocol for Radio Frequency IDentification (RFID) systems which exploits the statistical information collected at the reader. The protocol, termed Adaptive Slot Adaptive Frame (ASAF) ALOHA protocol, is motivated to significantly improve the total read time performance of the currently suggested MAC protocols for RFID systems by minimizing the collisions of the tags. In order to perform this task, ASAF estimates the dynamic tag population and adapts the frame size and number of slots simultaneously in the subsequent round via a simple policy that maximizes an appropriately defined function. We demonstrated that ASAF is better than the current RFID MAC protocols. We also considered the case where suddenly if the number of tags increases, the running frame with adapted slots gets flushed away and new frame with increased number of slots gets adapted automatically by the system showing the robustness in this case as well.  相似文献   

6.
Arbitration of tag collision is a significant issue for fast tag identification in RFID systems. A good tag anti‐collision algorithm can reduce collisions and increase the efficiency of tag identification. EPCglobal Generation‐2 (Gen2) for passive RFID systems uses probabilistic slotted ALOHA with a Q algorithm, which is a kind of dynamic framed slotted ALOHA (DFSA), as the tag anti‐collision algorithm. In this paper, we analyze the performance of the Q algorithm used in Gen2, and analyze the methods for estimating the number of slots and tags for DFSA. To increase the efficiency of tag identification, we propose new tag anti‐collision algorithms, namely, Chebyshev's inequality, fixed adjustable framed Q, adaptive adjustable framed Q, and hybrid Q. The simulation results show that all the proposed algorithms outperform the conventional Q algorithm used in Gen2. Of all the proposed algorithms, AAFQ provides the best performance in terms of identification time and collision ratio and maximizes throughput and system efficiency. However, there is a tradeoff of complexity and performance between the CHI and AAFQ algorithms.  相似文献   

7.
In this paper, a scheme to increase the throughput of RFID systems is presented, which considers the capture effect in the context of framed ALOHA protocol. Under the capture model in which the probability of one tag is identified successfully depending on the number of tags involved in the collision, two probabilistic methods for estimating the unknown number of tags are proposed. The first method is the maximum likelihood estimation method, and the second method is an approximate algorithm for reducing the computational time. The optimal frame size condition to maximize the system throughput by considering the capture effect is also presented.  相似文献   

8.
We propose an RFID tag anti-collision method using adaptive frame length adjustment. Based on the number of tags identified in the first frame, the original tag population can be estimated by solving a non-linear estimating equation. Subsequent frame lengths can be adaptively adjusted according to the number of remaining tags. The simulation results demonstrate the error rate of the proposed method to be less than 5% – superior to that of existing methods. Compared with the widely used dynamic frame slot ALOHA algorithm – adopted by EPC_C1 G2 standard – tag identification throughput performance increased by 50%.  相似文献   

9.
苏健  杨晓娇  韩雨 《电子学报》2018,46(4):903-910
多标签碰撞问题严重影响射频识别RFID系统的识别效率.在研究子帧观测机制的基础上,针对常规动态帧时隙Aloha多标签防碰撞算法存在的复杂度高、时间效率低等问题,提出了一种基于子帧的动态帧时隙Aloha算法,其在识别过程中采取设定的子帧观测,运用空闲与碰撞时隙数的关系估计剩余标签数,再依据预估的结果优化设置新的帧长,显著提升了大容量多标签RFID系统的识别效率.该算法的运算复杂度低、计算量小,易于在常规RFID读写器中实现,工程应用前景广阔.仿真结果表明:同传统的Aloha类防碰撞算法相比,提出的算法具有复杂度低、稳定好、识别效率高等优势.  相似文献   

10.
改进动态帧时隙ALOHA算法   总被引:1,自引:0,他引:1  
ALOHA型算法是一种防碰撞算法,适用于标签数目较少的情况。当标签数目逐渐增大时,通常需要指数倍增长的时隙数才能识别出这些标签。文中提出了一种改进的动态帧时隙ALOHA算法,它首先估计未被识别的标签数,然后调整相应帧长,从而获得最佳系统效率。仿真结果显示,当标签数为500时,文中所提出算法较传统算法的系统时延减少为原来的1/2。  相似文献   

11.
该文针对现有动态帧时隙ALOHA标签防碰撞算法的系统吞吐率低、算法效率低等问题,提出一种可并行识别的分组动态帧时隙ALOHA(PIGDFSA)标签防碰撞算法。该文以实验为基础,探索了待识别标签数、标签分组数、帧长对系统吞吐率与标签碰撞率的影响,研究了提升系统吞吐率与降低标签碰撞率的策略与方法。结合射频识别(RFID)的多天线系统,引入FastICA技术,从而实现碰撞时隙重新定义,并以此为基础,利用未识别标签数目自适应确定分组数与帧长。仿真结果表明:PIGDFSA算法在标签数达到2000时,算法吞吐率仍能稳定在92%以上,与FSA-256, GDFSA, BSDBG等算法相比具有更高的算法吞吐率,更少的空隙时隙,更高的算法效率。  相似文献   

12.
Radio frequency identification (RFID) technology has recently become an integral part of a wide range of applications. One of the challenges in RFID systems is the tag anti‐collision issue, for which several anti‐collision tag identification protocols have been proposed. This paper proposes a novel slotted ALOHA‐based RFID tag anti‐collision algorithm which can be employed for tag identification. The main idea of this algorithm is to use the information available in collision slots, called collided data, to identify tags uniquely. For this purpose, the collision slots that include only two tags are selected. Then, the non‐conflict bits in these slots are used to possibly identifying the tags. Because in the proposed algorithm readers use both single slots and also the collision slots for tag identification, the performance is increased significantly compared with other protocols. Results of the study indicate that in the proposed algorithm, the optimal frame size for an individual tag number is equal to the half of tags number and the efficiency of the proposed protocol is improved to about 73%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
进行了全面的基于动态帧时隙 ALOHA(DFSA)的无源 RFID 系统多标签识别防碰撞算法研究,并将其中的标签数目估计技术进行序贯加权处理,通过仿真比较了改进前后 DFSA算法的性能,并确定了最佳遗忘因子。仿真结果表明,该改进措施缩短了 RFID识别标签所需时间,提高了系统的工作效率,可有效地应用于港口码头、车站或物流中心的集装箱管理或物流配送管理,以改善由于 RFID系统多标签碰撞而导致的货物流通缓慢或拥堵问题。  相似文献   

14.
改进型帧时隙ALOHA防碰撞算法研究   总被引:2,自引:0,他引:2  
为进一步提高RFID系统中电子标签防碰撞算法的识别效率,对帧时隙ALOHA防碰撞算法的性能进行分析,提出一种结合精确标签估计和二进制搜索的改进型帧时隙ALOHA算法.将识别过程分为标签估计和标签识别两个阶段,在标签估计算法中引入碰撞概率上、下限参数,并精确估计标签数量对初始帧时隙大小进行优化;在标签识别阶段,利用二进制搜索算法对时隙内的碰撞标签进行快速识别.通过对识别过程进行仿真结果表明:改进的算法改善了防碰撞性能,提高了RFID系统的标签识别效率.  相似文献   

15.
During the radio‐frequency identification authentication process, it is of great significance to quickly find out the target tag from all tags stored in the database, because it affects the authentication performance to a great extent. Most of the existing schemes use the Hash or pseudorandom number generator operation to locate the target tag, but if the number of tags is extremely large, vast Hash or pseudorandom number generator operations may take much time and lower the authentication efficiency. To locate the target tag quickly, the RAP and LADP protocols adopt the simple value comparison method, and the back‐end server can easily find the target tag by directly comparing the received index‐pseudonym value with those stored in the database. This method does improve the authentication performance, but it results that these schemes suffer from the tag tracking attack. Motivated by these concerns, we propose a novel tag indexing method called the two‐layer tag indexing mechanism, and at the same time, we give a lightweight radio‐frequency identification authentication protocol based on it. Analyses show that our scheme can effectively resist the tag tracking attack and is almost as efficient as the RAP and LADP protocols in indexing tags. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
为了解决射频识别(RFID)系统中的多标签防碰撞问题,在分析帧时隙ALOHA算法的基础上,提出一种基于模运算标签分类的RFID标签防碰撞识别方法。引入一种检测信息碰撞的时隙选择信息,对标签所选取时隙的碰撞情况进行分析并估计标签数量;然后对标签EPC编码进行逐级的取模运算,将同余的标签归为一组。各个标签经过K次取模运算后,分为2k组,每组只有发生少量碰撞位的标签。再将标签按照分组对应的时隙发送,碰撞标签采用二叉树后退式算法处理。本方法极大的提高了标签的识别效率,适用于射频识别系统中阅读器对于大量电子标签的快速识别。  相似文献   

17.
Radio Frequency Identification (RFID) uses wireless radio frequency technology to automatically identify tagged objects. Despite the extensive development of the RFID technology in many areas, tags collisions still remain a major problem. This issue is known as the collision problem and can be solved by using anti-collision techniques. Current probabilistic anti-collision approaches suffer from tag starvation due to the inaccurate Backlog estimation and have a low performance in some cases. In this research, we propose a Probabilistic Cluster-Based Technique (PCT) to maximise the performance efficiency during the tag identification process. The PCT approach creates new tag grouping strategies using particular equations, according to the optimal efficiency obtained for a specific number of tags. Through extensive experimentation, we have demonstrated that the proposed concept performs better than the other current state-of-the-art approaches.  相似文献   

18.
Tag collision algorithm is a key issue for energy saving and throughput with Radio Frequency IDentification (RFID) system more popular in sensing infrastructure of covering wider area on a large scale. Exploiting low energy consumption strategy would enable longer operational life of tags and reader with battery energy supply. And improving throughput is required on a large scale to preserve the capability of the correct reception. Therefore, this paper proposes an enhanced anti-collision algorithm called Dynamic Slotted with Muting (DSM), which uses multiple slots within a frame per node in a binary tree and takes tag estimation function to optimize the number of slots, and adds a mute command to put identified tags silence. The performance of the proposed algorithm is analytically provided, and simulation results show that DSM saves more than 40% energy consumptions both at reader and tags, and improves more than 35% throughput compared to the existing algorithms. Thus our algorithm is demonstrated to perform efficient energy savings at reader and tags with throughput improvement.  相似文献   

19.
为提高轮胎嵌入式UHF RFID 电子标签读取可靠性,需要解决一对矛盾,即一方面,为保证电子标签与轮胎有良好的粘合性和绑定性,要求标签天线尺寸足够小;另一方面,轮胎无线电环境差,轮胎材料对电磁波的固有介质损耗和干扰要求电子标签天线尺寸应足够大,以提高电磁辐射能力。针对以往设计方法复杂、不利于标签与轮胎绑定的问题,根据Bode-Fano 阻抗匹配的约束,利用弯折天线的周期性和紧凑性,提出了一种简单、具有良好阻抗特性和绑定特性的轮胎嵌入式小型化UHF RFID 弯折天线方法,设计了一种物理空间受限的轮胎嵌入式小型化UHF RFID 弯折天线。HFSS 仿真验证表明,设计的天线在833 ~971MHz 频带范围内回波损耗小于-10dB,覆盖了美国RFID 标准带宽902 ~928MHz,最大辐射增益为2. 4dBi。最后,通过设计的轮胎嵌入式RFID 电子标签测试,结果表明:当读取距离小于90cm 时,标签识别率大都大于80%;当读取距离小于50cm 时,标签识别率大于90%,标签与轮胎具有良好的绑定效果,满足设计要求。  相似文献   

20.
杨茜  吴海锋  曾玉 《通信学报》2014,35(7):26-222
在被动式RFID系统中,当多个标签同时向阅读器发射信号时,捕获效应能使阅读器成功接收其中一个标签信号。为提高捕获效应下的识别效率,本文提出一种名为CATPE (capture-aware and tag-population estimation)的RFID标签防冲突协议。该协议可同时估计标签数和捕获效应的发生概率,并在非等长时隙下设置最优帧长。CATPE协议的优点在于不需搜索极值,仅一步计算就能完成估计,从而降低了计算复杂度。计算机仿真显示,该协议与已有协议的识别效率相近,但计算复杂度得到了降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号