首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work describes a 10-b 150-MSample/s 4-b-per-stage single-channel CMOS pipelined ADC incorporating improved gate-bootstrapping techniques for a wideband SHA and temperature- and supply-insensitive CMOS references. The proposed ADC is designed and fabricated in a 0.18-/spl mu/m one-poly six-metal CMOS technology. The measured differential and integral nonlinearities are within 0.69 LSB and 1.50 LSB, respectively. The prototype ADC shows a peak signal-to-noise-and-distortion ratio (SNDR) of 52 dB at 150 MSample/s. The ADC maintains the SNDR over 52 dB and 43 dB, respectively, for input frequencies up to the Nyquist frequency and 400 MHz at 140 MSample/s. The active die area is 2.2 mm/sup 2/ and the chip consumes 123 mW at 150 MSample/s.  相似文献   

2.
This work describes a 10-b multibit-per-stage pipelined CMOS analog-to-digital converter (ADC) incorporating the merged-capacitor switching (MCS) technique. The proposed MCS technique improves the signal processing speed and resolution of the ADC by reducing the required number of unit capacitors by half in comparison to a conventional ADC. The ADC resolution based on the proposed MCS technique can be extended further by employing a commutated feedback-capacitor switching (CFCS) technique. The prototype ADC achieves better than 53-dB signal-to-noise-and-distortion ratio (SNDR) at 120 MSample/s and 54-dB SNDR and 68-dB spurious-free dynamic range (SFDR) for input frequencies up to Nyquist at 100 MSample/s. The measured differential and integral nonlinearities of the prototype are within /spl plusmn/0.40 LSB and /spl plusmn/0.48 LSB, respectively. The ADC fabricated in a 0.25-/spl mu/m CMOS occupies 3.6 mm/sup 2/ of active die area and consumes 208 mW under a 2.5-V power supply.  相似文献   

3.
A 13-bit 8 MSample/s high-accuracy CMOS pipeline ADC is proposed. At the input, the sample-andhold amplifier (SHA) is removed for low power and low noise; meanwhile, an improved sampling circuit is adopted to alleviate the clock skew effect. On-chip bias current is programmable to achieve low power dissipation at different sampling rates. Particularly, drain-to-source voltages in the operational amplifiers (opamps) are fixed to ensure high DC gain within the variant range of the bias current. Both on-chip and off-chip decoupling capacitors are used in the voltage reference circuit in consideration of low power and stability. The proposed ADC was implemented in 0.18-μm 1P6M CMOS technology. With a 2.4-MHz input, the measured peak SNDR and SFDR are 74.4 and 91.6 dB at 2.5 MSample/s, 74.3 and 85.4 dB at 8.0 MSample/s. It consumes 8.1, 21.6, 29.7, and 56.7 mW (including I/O drivers) when operating at 1.5, 2.5, 5.0, and 8.0 MSample/s with 2.7 V power supply, respectively. The chip occupies 3.2 mm^2, including I/O pads.  相似文献   

4.
A new all-digital background calibration method, using a piecewise linear model to estimate the stage error pattern, is presented. The method corrects both linear and nonlinear errors. The proposed procedure converges in a few milliseconds and requires low hardware overhead, without the need of a high-capacity ROM or RAM. The calibration procedure is tested on a 0.6- $mu{hbox {m}}$ CMOS pipeline analog-to-digital converter (ADC), which suffers from a high degree of nonlinear errors. The calibration gives improvements of 17 and 26 dB for signal-noise-and-distortion ratio (SNDR) and spurious-free dynamic range (SFDR), respectively, for the Nyquist input signal at the sampling rate of 33 MSample/s. The calibrated ADC achieves SNDR of 70.3 dB and SFDR of 81.3 dB at 33 MSample/s, which results in a resolution of about 12 b.   相似文献   

5.
A 13-bit 8 MSample/s high-accuracy CMOS pipeline ADC is proposed. At the input, the sample-and-hold amplifier (SHA) is removed for low power and low noise; meanwhile, an improved sampling circuit is adopted to alleviate the clock skew effect. On-chip bias current is programmable to achieve low power dissipation at different sampling rates. Particularly, drain-to-source voltages in the operational amplifiers (opamps) are fixed to ensure high DC gain within the variant range of the bias current. Both on-chip and off-chip decoupling capacitors are used in the voltage reference circuit in consideration of low power and stability. The proposed ADC was implemented in 0.18-μm IP6M CMOS technology. With a 2.4-MHz input, the measured peak SNDR and SFDR are 74.4 and 91.6 dB at 2.5 MSample/s, 74.3 and 85.4 dB at 8.0 MSample/s. It consumes 8.1, 21.6, 29.7, and 56.7 mW (including I/O drivers) when operating at 1.5, 2.5, 5.0, and 8.0 MSample/s with 2.7 V power supply, respectively. The chip occupies 3.2 mm2, including I/O pads.  相似文献   

6.
A 150-MS/s 8-b 71-mW CMOS time-interleaved ADC   总被引:3,自引:0,他引:3  
A pipelined analog-to-digital converter (ADC) architecture suitable for high-speed (150 MHz), Nyquist-rate A/D conversion is presented. At the input of the converter, two parallel track-and-hold circuits are used to separately drive the sub-ADC of a 2.8-b first pipeline stage and the input to two time-interleaved residue generation paths. Beyond the first pipeline stage, each residue path includes a cascade of two 1.5-b pipeline stages followed by a 4-b "backend" folding ADC. The full-scale residue range at the output of the pipeline stages is half that of the converter input range in order to conserve power in the operational amplifiers used in each residue path. An experimental prototype of the proposed ADC has been integrated in a 0.18-/spl mu/m CMOS technology and operates from a 1.8-V supply. At a sampling rate of 150 MSample/s, it achieves a peak SNDR of 45.4 dB for an input frequency of 80 MHz. The power dissipation is 71 mW.  相似文献   

7.
The design of a 600-MS/s 5-bit analog-to-digital (A/D) converter for serial-link receivers has been investigated. The A/D converter uses a closed-loop pipeline architecture. The input capacitance is only 170 fF, making it suitable for interleaving. To maintain low power consumption and increase the sampling rate beyond the amplifier settling limit, the paper proposes a calibration technique that digitally adjusts the reference voltage of each pipeline stage. Differential input swing is 400 mV/sub p-p/ at 1.8-V supply. Measured performance includes 25.6 dB and 19 dB of SNDR for 0.3-GHz and 2.4-GHz input frequencies at 600 MS/s for the calibrated A/D converter. The suggested calibration method improves SNDR by 4.4 dB at 600 MS/s with /spl plusmn/0.35 LSB of DNL and /spl plusmn/0.15 LSB of INL. The 180 /spl times/ 1500 /spl mu/m/sup 2/ chip is fabricated in a 0.18-/spl mu/m standard CMOS technology and consumes 70 mW of power at 600 MS/s.  相似文献   

8.
9.
A low voltage-power 13-bit 16 MSPS CMOS pipelined ADC   总被引:1,自引:0,他引:1  
A low voltage-power, 13-bit and 16 MSPS analog-to-digital converter (ADC) was implemented in 0.25-/spl mu/m one-poly five-metal standard CMOS process with MIM capacitors. This ADC used a constant-gm switch to improve the nonlinear effect and a telescopic operational transconductance amplifier with a wide-swing biasing technique for power saving and low supply voltage operation. The converter achieved a peak SNDR of 59.2 dB with 16.384 MSPS, a low supply voltage of 1.3V, and Nyquist input frequency of 8.75 MHz. The static INL of /spl plusmn/2.0 LSB and DNL of /spl plusmn/0.5 LSB were obtained. The total power consumption of this converter was 78 mW. This chip occupied 3.4 mm /spl times/ 3.6 mm area.  相似文献   

10.
This paper presents an 8-b two-step subranging analog-to-digital (ADC) using interpolation, averaging, offset compensation, and pipelining techniques to accomplish an effective number of bits of 7.6 b at 125 MSample/s. The 0.13-/spl mu/m CMOS ADC occupies 0.09 mm/sup 2/ and consumes 21 mW.  相似文献   

11.
A time-shifted correlated double sampling (CDS) technique is proposed in the design of a 10-bit 100-MS/s pipelined ADC. This technique significantly reduces the finite opamp gain error without compromising the conversion speed, allowing the active opamp blocks to be replaced by simple cascoded CMOS inverters. Both high-speed and low-power operation is achieved without compromising the accuracy requirement. An efficient common-mode voltage control is introduced for pseudodifferential architecture which can further reduce power consumption. Fabricated in a 0.18-/spl mu/m CMOS process, the prototype 10-bit pipelined ADC occupies 2.5 mm/sup 2/ of active die area. With 1-MHz input signal, it achieves 65-dB SFDR and 54-dB SNDR at 100MS/s. For 99-MHz input signal, the SFDR and SNDR are 63 and 51 dB, respectively. The total power consumption is 67 mW at 1.8-V supply, of which analog portion consumes 45 mW without any opamp current scaling down the pipeline.  相似文献   

12.
This paper presents the first implementation results for a time-interleaved continuous-time /spl Delta//spl Sigma/ modulator. The derivation of the time-interleaved continuous-time /spl Delta//spl Sigma/ modulator from a discrete-time /spl Delta//spl Sigma/ modulator is presented. With various simplifications, the resulting modulator has only a single path of integrators, making it robust to DC offsets. A time-interleaved by 2 continuous-time third-order low-pass /spl Delta//spl Sigma/ modulator is designed in a 0.18-/spl mu/m CMOS technology with an oversampling ratio of 5 at sampling frequencies of 100 and 200 MHz. Experimental results show that a signal-to-noise-plus-distortion ratio (SNDR) of 57 dB and a dynamic range of 60 dB are obtained with an input bandwidth of 10 MHz, and an SNDR of 49 dB with a dynamic range of 55 dB is attained with an input bandwidth of 20 MHz. The power consumption is 101 and 103 mW, respectively.  相似文献   

13.
Bandpass modulators sampling at high IFs (/spl sim/200 MHz) allow direct sampling of an IF signal, reducing analog hardware, and make it easier to realize completely software-programmable receivers. This paper presents the circuit design of and test results from a continuous-time tunable IF-sampling fourth-order bandpass /spl Delta//spl Sigma/ modulator implemented in InP HBT IC technology for use in a multimode digital receiver application. The bandpass /spl Delta//spl Sigma/ modulator is fabricated in AlInAs-GaInAs heterojunction bipolar technology with a peak unity current gain cutoff frequency (f/sub T/) of 130 GHz and a maximum frequency of oscillation (f/sub MAX/) of 130 GHz. The fourth-order bandpass /spl Delta//spl Sigma/ modulator consists of two bandpass resonators that can be tuned to optimize both wide-band and narrow-band operation. The IF is tunable from 140 to 210 MHz in this /spl Delta//spl Sigma/ modulator for use in multiple platform applications. Operating from /spl plusmn/5-V power supplies, the fabricated fourth-order /spl Delta//spl Sigma/ modulator sampling at 4 GSPS demonstrates stable behavior and achieves a signal-to-(noise + distortion) ratio (SNDR) of 78 dB at 1 MHz BW and 50 dB at 60 MHz BW. The average SNDR performance measured on over 250 parts is 72.5 dB at 1 MHz BW and 47.7 dB at 60 MHz BW.  相似文献   

14.
A 64-MHz clock rate sigma-delta (/spl Sigma//spl Delta/) analog-to-digital converter (ADC) with -105-dB intermodulation distortion (IMD) at a 1.5-MHz signal frequency is reported. A linear replica bridge sampling network enables the ADC to achieve high linearity for high signal frequencies. Operating at an oversampling ratio of 29, a 2-1-1 cascade with a 2-b quantizer in the last stage reduces the quantization noise level well below that of the thermal noise. The measured signal-to-noise and distortion ratio (SNDR) in 1.1-MHz bandwidth is 88 dB, and the spurious-free-dynamic-range (SFDR) is 106 dB. The modulator and reference buffers occupy a 2.6-mm/sup 2/ die area and have been implemented with thick oxide devices, with minimum channel length of 0.35 /spl mu/m, in a dual-gate 0.18-/spl mu/m 1.8-V single-poly five-metal (SP5M) digital CMOS process. The power consumed by the ADC is 230 mW, including the decimation filters.  相似文献   

15.
A 12-bit 20-Msample/s pipelined analog-to-digital converter (ADC) is calibrated in the background using an algorithmic ADC, which is itself calibrated in the foreground. The overall calibration architecture is nested. The calibration overcomes the circuit nonidealities caused by capacitor mismatch and finite operational amplifier (opamp) gain both in the pipelined ADC and the algorithmic ADC. With a 58-kHz sinusoidal input, test results show that the pipelined ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 70.8 dB, a peak spurious-free dynamic range (SFDR) of 93.3 dB, a total harmonic distortion (THD) of -92.9 dB, and a peak integral nonlinearity (INL) of 0.47 least significant bit (LSB). The total power dissipation is 254 mW from 3.3 V. The active area is 7.5 mm/sup 2/ in 0.35-/spl mu/m CMOS.  相似文献   

16.
A novel rapid power-on operational amplifier and a current modulation technique are used in a 10-bit 1.5-bit/stage pipelined ADC in 0.18-/spl mu/m CMOS to realize power scalability between 1 kS/s (15 /spl mu/W) and 50 MS/s (35 mW), while maintaining an SNDR of 54-56 dB for all sampling rates. The current modulated power scaling (CMPS) technique is shown to enhance the power scaleable range of current scaling by 50 times, allowing ADC power to be varied by a factor of 2500 while only varying bias currents by a factor of 50. Furthermore, the nominal power is reduced by 20%-30% by completely powering off the rapid power-on opamps during the sampling phase in the pipeline's sample-and-holds.  相似文献   

17.
A new technique for improving the performance of low-voltage folding ADC’s by extending the input range is presented. It is shown that by using both PMOS and NMOS differential pairs in the folding blocks, the overall input voltage range of the ADC can be increased to rail-to-rail. A novel self-adjustment method is also introduced to compensate for the different input–output characteristics of PMOS and NMOS differential pairs. A low voltage 8-bit 80 MSample/s folding/interpolating ADC is then designed and fabricated in a 0.18 μm CMOS process. Operating with a supply voltage as low as 1.2 V, measurements show an INL below ±0.55 LSB, SNDR of 43.5 dB at 80 MHz Sampling Frequency and power dissipation of only 30 mW.  相似文献   

18.
This paper describes a fully integrated single-chip CMOS mixed-signal system on a chip (SoC) for DVD player applications. It integrates one digital signal processor (DSP), two 32-bit CPUs, three dedicated processing units, a partial response maximum likelihood (PRML) read channel with an analog front end (AFE), and many other subsystems on the same die. The AFE includes a fifth-order G/sub m/-C filter and attains over 66 dB C/N overall. PR(3,4,4,3) structure is employed in the PRML read channel. Owing to the PRML signal processing and the mixed-signal system level optimization in the PRML read channel, less than 10/sup -6/ of bit-error rate (BER) is obtained for the focus offset margins over /spl plusmn/0.5 /spl mu/m. This SoC is fabricated in 0.13-/spl mu/m one-poly six-Cu CMOS technology. It contains 24 million transistors in a 63.87 mm/sup 2/ die and consumes 1.5 W at 40 MSample/s data rate, which corresponds to DVD 1.5 times playback operation mode.  相似文献   

19.
论述了一种高速度低功耗的8位250 MHz采样速度的流水线型模数转换器(ADC).在高速度采样下为了实现大的有效输入带宽,该模数转换器的前端采用了一个采样保持放大器(THA).为了实现低功耗,每一级的运放功耗在设计过程中具体优化,并在流水线上逐级递减.在250 MHz采样速度下,测试结果表明,在1.2 V供电电压下,所有模块总功耗为60 mw.在19 MHz的输入频率下,SFDR达到60.1 dB,SNDR为46.6 dB,有效比特数7.45.有效输入带宽大于70 MHz.该ADC采用TSMC 0.13μm CMOS 1P6M工艺实现,芯片面积为800 μm×700μm.  相似文献   

20.
For high-data-rate wireless communication, low-voltage baseband converters integrated with DSP in deep submicrometer processes are area- and power-efficient. Through careful architecture selections and circuit techniques, this paper demonstrates a low-voltage (0.8 V), low-power (480 /spl mu/W), 6-b/22-MHz flash-interpolation ADC which occupies 0.3 mm/sup 2/ and achieves 33 dB SNDR and 47 dB SFDR. The power efficiency of this converter is 0.6 pJ/conv-step which compares favorably with all published results. We also introduce a nonlinear double interpolation technique that enables the use of a 0.13-/spl mu/m standard digital CMOS process without special resistors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号