首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic performance of Fe/Si‐2 and Fe–Mn/Si‐2 catalysts for conversion of C2H6 with CO2 to C2H4 was examined in a continuous‐flow and fixed‐bed reactor. The results show that the Fe–Mn/Si‐2 catalyst exhibits much better reaction activity and selectivity to C2H4 than those of the Fe/Si‐2 catalyst. Furthermore, the coking–decoking behaviors of these catalysts were studied through TG. The catalytic performances of the catalysts after regeneration for conversion of C2H6 or dilute C2H6 in FCC off‐gas with CO2 to C2H4 were also examined. The results show that both activity and selectivity of the Fe–Mn/Si‐2 catalyst after regeneration reached the same level as those of the fresh catalyst, whereas it is difficult for the Fe/Si‐2 catalyst to refresh its reaction behavior after regeneration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The catalytic performances and properties of SrFeO3-0.190 and SrFeO3-0.382Cl0.443 catalysts have been investigated for the oxidative dehydrogenation of ethane (ODE). XRD results showed that both catalysts exhibited oxygen-deficient perovskite-type structures. The inclusion of chloride ions in the SrFeO3-δlattice matrix can significantly enhance ethene selectivity and ethane conversion. The SrFeO3-0.382Cl0.443 catalyst showed an ethane conversion of ca. 90%, an ethene selectivity of ca. 70%, and an ethene yield of ca. 63% under the reaction conditions: C2H6:O2:N2 = 2:1:3.7, temperature 680°C, and space velocity 6000 ml h-1 g-1. With the increase of space velocity, ethane conversion decreased, whereas ethene selectivity increased over SrFeO3-0.382Cl0.443. Lifetime studies showed that the perovskite-type chloro-oxide catalyst was durable. The results of O2-TPD and TPR experiments illustrated that the implanted chloride ions caused the oxygen nature of SrFeO3-δ to change. By regulating the concentration of oxygen vacancies and the Fe4+/Fe ratio in this perovskite-type chloro-oxide catalyst, one can generate a durable chloro-oxide catalyst for the ODE reaction with excellent performance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Co–BaCO3 catalysts exhibited high catalytic performance for oxidative dehydrogenation of ethane (ODE) using CO2 as oxidant. The maximal formation rate of C2H4 was 0.264 mmol · min−1 · (g · cat.)−1 (48.0% C2H6 conversion, 92.2% C2H4 selectivity, 44.3% C2H4 yield) on 7 wt% Co–BaCO3 catalyst at 650 °C and 6000 ml. (g · cat.)−1. h−1. Co–BaCO3 catalysts were comparatively characterized by XRF, N2 isotherm adsorption-desorption, XRD, H2-TPR and LRs. It was found that Co4+–O species were active sites on these catalysts in ODE with CO2. The redox cycle of Co–O species played an important role on the catalytic performance of Co–BaCO3 catalysts. On the other hand, the co-operation of BaCO3 and BaCoO3 was considered to be one of possible reasons for the high catalytic activity of these catalysts.  相似文献   

4.
Methanethiol has been synthesized by one‐step catalytic reaction from H2S‐content syngas on K2MoS4/SiO2 catalyst with selectivity over 95% under the optimum reaction conditions of 563 K, 2.0–3.0 MPa and 5–6% H2S content in the feed syngas. The results of XRD and XPS showed that Mo–S–K phase on the surface of the catalyst K2MoS4/SiO2 was responsible for the high activity and selectivity to methanethiol, and which may be restrained by the existence of (S–S)2- species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Highly active and heat‐resisting W/HZSM‐5‐based catalysts for nonoxidative dehydro‐aromatization of methane (DHAM) have been developed and studied. It was found from the experiments that the W−H2SO4/HZSM−5 catalyst prepared from a H2SO4‐acidified solution of ammonium tungstate (with a pH value at 2–3) displayed rather high DHAM activity at 973–1023 K, whereas the W/HZSM‐5 catalyst prepared from an alkaline or neutral solution of (NH4)2WO4 showed very little DHAM activity at the same temperatures. Laser Raman spectra provided evidence for existence of (WO6)n- groups constructing polytungstate ions in the acidified solution of ammonium tungstate. The H2‐TPR results showed that the reduction of precursor of the 3% W–H2SO4/HZSM‐5 catalyst may occur at temperatures below 900 K, producing W species with mixed valence states, W5+ and W4+, whereas the reduction of the 3% W/HZSM‐5 occurred mainly at temperatures above 1023 K, producing only one type of dominant W species, W5+. The results seem to imply that the observed high DHAM activity on the W–H2SO4/HZSM‐5 catalyst was closely correlated with (WO6)n- groups with octahedral coordination as the precursor of catalytically active species. Incorporation of Zn (or La) into the W–H2SO4/HZSM‐5 catalyst has been found to pronouncedly improve the activity and stability of the catalyst for DHAM reaction. Over a 2.5% W–1.5% Zn–H2SO4/HZSM‐5 catalyst and under reaction conditions of 1123 K, 0.1 MPa, and GHSV=1500 ml/(h g−cat.), methane conversion (XCH4) reached 23% with the selectivity to benzene at ∼96% and an amount of coke for 3 h of operation at 0.02% of the catalyst weight used. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The interactions of NO, O2 and NO2 with Fe‐ZSM‐5, as well as the reduction of NO by C3H8 in the presence of O2, have been investigated using in situ infrared spectroscopy. The sample of Fe‐ZSM‐5 (Fe/Al =0.56) was prepared by solid‐state ion exchange. NO adsorption in the absence of O2 produces only mono‐ and dinitrosyl species associated with Fe2+ cations. Adsorbed NO2/NO3 species are formed via the reaction of adsorbed O2 with gas‐phase NO or by the adsorption of gas‐phase NO2. The reduction of NO in the presence of O2 begins with the reaction of gas‐phase C3H8 with adsorbed NO2/NO3 species to form a nitrogen‐containing polymeric species. A reaction pathway is proposed for the catalyzed reduction of NO by C3H8 in the presence of O2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
La2CuO4 is an active catalyst for the reduction of NO by CO. Under reaction conditions, the catalyst exhibits an activation which results in a lowering of the light‐off temperature by 80°C. XRD, TEM and EDX analysis carried out after the catalytic test indicate that the mixed oxide has been reduced to form a La2O3, Cu binary system. It seems that metallic copper species are the most active sites in the CO + NO reaction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
La1.867Th0.100CuO4 was prepared by means of the citric acid complexing method. The reduction–oxidation (redox) properties of this composite oxide have been investigated by using the XRD, TGA, EPR, TPD, and SEM methods. The fresh (non-reduced) La1.867Th0.100CuO4 catalyst is single phase with tetragonal K2NiF4-type structure. There were three reduction steps observed over La1.867Th0.100CuO4 in the temperature ranges of 25–100, 100–300, and 300–500 °C, respectively. After reduction at 300 °C, the material still retained its original single phase but there were oxygen vacancies generated in the lattice. After reduction at 500 °C, it decomposed to a mixture of oxides. In the course of reduction, trapped electrons were generated. During the oxidation of the reduced sample, O 2 was detected. Apparently, oxygen vacancies are able to stabilise O 2 on the surface of the -1ptcatalyst. NO adsorption on both the fresh and reduced La1.867Th0.100CuO4 samples generated NO radicals and O 2 species. On a La1.867Th0.100CuO4 sample reduced at 300 °C, [O2NO2]2– was generated in NO adsorption and decomposed to N2 and O2– at ca. 730 °C. After reduction, the O 2 inside the La1.867Th0.100CuO4 lattice became more mobile and participated in the decomposition of [O2NO2]2–. The fresh (non-reduced) La1.867Th0.100CuO4 sample with cation defects in its lattice shows higher NO decomposition activity than the fresh La2CuO4 sample in which there are no cation defects. The 300 °C-reduced La1.867Th0.100CuO4 with cation defects and oxygen vacancies is more active than the fresh one for NO decomposition. The redox action between Cu+ and Cu2+ is an essential process for NO decomposition.  相似文献   

9.
By adding solutions containing catalyst salts to hot monolith catalysts during partial oxidation processes, the salt decomposes instantly and is deposited selectively near the front face. We have used this technique to deposit extremely small amounts of Pt on α-Al2O3 monoliths during ethane oxidation to olefins. We find that on this catalyst with H2 addition, the selectivity to ethylene rises from ∼ to over 80% at an ethane conversion of ∼60% and at complete O2 conversion. We also examine the addition of promoters including Sn, which gives improved performance compared to the Pt catalyst alone. This appears to be a general effect that could be useful in preparing catalysts with different loadings and distributions in high‐temperature processes. It can also be used for rapid and accurate diagnosis of catalysts and additives and to modify catalysts on‐line in situations where deactivation or catalyst loss occurs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The chemistry between NO x species adsorbed on La2O3 and CH4 was probed by temperature‐programmed reaction (TPR) as well as in situ DRIFTS. During NO reduction by CH4 in the presence of O2, NO 3 - does not appear to activate CH4, thus either an adsorbed O species or an NO 2 - species is more likely to activate CH4. In the absence of O2, a different reaction pathway occurs and NO- or (N2O2)2- species adsorbed on oxygen vacancy sites seem to be active intermediates, and during NO reduction with CH4 unidentate NO 3 - , which desorbs at high temperature, behaves as a spectator species and is not directly involved in the catalytic sequence. Because reaction products such as CO2 or H2O as well as adsorbed oxygen cannot be effectively removed from the surface at lower temperatures, steady‐state catalytic reactions can only be achieved at temperatures above 800 K, even though formation of N2 and N2O from NO was observed at much lower temperature during the TPR experiments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The hydrogenation of CO over a RhVO4/SiO2 catalyst has been investigated after H2 reduction at 773 K. A strong metal–oxide interaction (SMOI) induced by the decomposition of RhVO4 in H2 enhanced not only the selectivity to C2 oxygenates but also the CO conversion drastically, compared with an unpromoted Rh/SiO2 catalyst. The selectivity of the RhVO4/SiO2 catalyst was similar to those of conventional V2O5‐promoted Rh/SiO2 catalysts (V2O5–Rh/SiO2), but the CO dissociation activity (and TOF) was much higher than for V2O5–Rh/SiO2, and hence the yield of C2 oxygenates was increased. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
La(1−x)SrxCo(1−y)FeyO3 samples have been prepared by sol–gel method using EDTA and citric acid as complexing agents. For the first time, Raman mappings were achieved on this type of samples especially to look for traces of Co3O4 that can be present as additional phase and not detect by XRD. The prepared samples were pure perovskites with good structural homogeneity. All these perovskites were very active for total oxidation of toluene above 200 °C. The ageing procedure used indicated good thermal stability of the samples. A strong improvement of catalytic properties was obtained substituting 30% of La3+ by Sr2+ cations and a slight additional improvement was observed substituting 20% of cobalt by iron. Hence, the optimized composition was La0.7Sr0.3Co0.8Fe0.2O3. The samples were also characterized by BET measurements, SEM and XRD techniques. Iron oxidation states were determined by Mössbauer spectroscopy. Cobalt oxidation states and the amount of O electrophilic species were analyzed from XPS achieved after treatment without re-exposition to ambient air. Textural characterization revealed a strong increase in the specific surface area and a complete change of the shape of primary particles substituting La3+ by Sr2+. The strong lowering of the temperature at conversion 20% for the La0.7Sr0.3Co(1−y)FeyO3 samples can be explained by these changes. X photoelectron spectra obtained with our procedure evidenced very high amount of O electrophilic species for the La0.7Sr0.3Co(1−y)FeyO3 samples. These species able to activate hydrocarbons could be the active sites. The partial substitution of cobalt by iron has only a limited effect on the textural properties and the amount of O species. However, Raman spectroscopy revealed a strong dynamic structural distortion by Jahn–Teller effect and Mössbauer spectroscopy evidenced the presence of Fe4+ cations in the iron containing samples. These structural modifications could improve the reactivity of the active sites explaining the better specific activity rate of the La0.7Sr0.3Co0.8Fe0.2O3 sample. Finally, an additional improvement of catalytic properties was obtained by the addition of 5% of cobalt cations in the solution of preparation. As evidenced by Raman mappings and TEM images, this method of preparation allowed to well-dispersed small Co3O4 particles that are very efficient for total oxidation of toluene with good thermal stability contrary to bulk Co3O4.  相似文献   

13.
Nanosized solid superacids SO4 2−/TiO2 and S2O8 2−/TiO2, as well as MCM-41-supported SO4 2−/ZrO2, were prepared. Their structures, acidities, and catalytic activities were investigated and compared using XRD, N2 adsorption-desorption, and in situ FTIR-pyridine adsorption, as well as an evaluation reaction with pseudoionone cyclization. The results showed that SO4 2−/TiO2 and S2O8 2−/TiO2 possess not only nanosized particles with diameters < 7.0 nm, a BET surface greater than 140 cm2/g and relatively regular mesostructures with pores around 4.0 nm, but also a pure anatase phase and strong acidity. Different from the Lewis acid nature of SO4 2−/ZrO2/MCM-41, SO4 2−/TiO2 and S2O8 2−/TiO2 exhibit mainly Bronsted acidities. The strongest Bronsted acid sites were produced on SO4 2−/TiO2 promoted with H2SO4, while Lewis acid sites on S2O8 2−/TiO2 even stronger than those on SO4 2−/ZrO2/MCM-41 were generated when persulfate solution was used as sulfating agent. Because of their distinct acid natures, SO4 2−/TiO2 and S2O8 2−/TiO2 exhibited catalytic activities for the cyclization of pseudoionone that were much higher than that of SO4 2−/ZrO2/MCM-41. It can be concluded that the existence of more Br?nsted acid sites was favorable for proton participation in the cyclization reaction. Translated from Journal of Chemical Engineering of Chinese Universities, 2006, 20(2): 239–244 [译自: 高校化学工程学报]  相似文献   

14.
The propane oxydehydrogenation with monolayer lattice oxygen of undoped and K2O–, CaO– and P2O5–NiMoO4 was investigated by using a periodic‐flow reactor (PFR). The influence of the nature and the extent of the promoter has been emphasized relative to the doped catalysts with respect to pure NiMoO4 phases. It was observed that calcium and potassium promoters satisfactorily enhance propylene selectivity, and phosphorus promoter specifically increases the total activity while maintaining the propylene selectivity. Evidence found by thermogravimetric (TG) analyses (oxygen depletion rate) has shown a dependence on lattice oxygen mobility due to the presence of promoters. This dependence has been correlated to the propane conversion while the propylene selectivity was attributed to the acid–base properties. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The role of Ag in simultaneously catalyzing NO reduction and C3H6 oxidation was shown to be strongly dependent on the redox properties of its local environment. Under an atmosphere of 1,000 ppm NO, 3,000 ppm C3H6, and 1% O2 and a GHSV of 30,000 h−1, a perovskite La0.88Ag0.12FeO3 prepared by reactive grinding is active giving a complete NO conversion and 92% C3H6 conversion at 500 °C. These values are much higher than the NO conversion of 55% and C3H6 conversion of 45% obtained over a 3 wt.% Ag/Al2O3 catalyst under the same conditions. Under an excess of oxygen (10% O2) a good SCR performance with a plateau of N2 yield above 97% over a wide temperature window of 350–500 °C along with C3H6 conversion of 90% at 500 °C was observed over Ag/Al2O3, while minor N2 yields (∼10% at 250–350 °C) and high C3H6 conversions (reaching ∼100% at 450 °C) were obtained over La0.88Ag0.12FeO3. Abundant molecular oxygen is desorbed from Ag substituted perovskite after 10% O2 adsorption as verified by O2- temperature programmed desorption (TPD). This reflects the strongly oxidative properties of La0.88Ag0.12FeO3, which lead to a satisfactory NO reduction at 1% O2 due to the ease of nitrate formation but to a significant C3H6 combustion above that value. The formation of nitrate species over the less oxidizing Ag/Al2O3 was accelerated under an excess of oxygen resulting in an excellent lean NO reduction behavior. The redox properties of silver catalysts could be adjusted via mixing perovskite with alumina for an optimal elimination of both NO and C3H6 over the whole range of oxygen concentration between 0 to 10%.  相似文献   

16.
During room‐temperature transient experiments, acetic acid decomposes photocatalytically on TiO2 in an inert atmosphere by two parallel pathways. One pathway forms CO2 and C2H6 in a 2:1 ratio, and H2O forms with lattice oxygen that was extracted from the surface. The other pathway forms CO2 and CH4 in a 1:1 ratio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
H2La2Ti3O10/ TiO2 intercalated nanomaterial was fabricated by successive intercalation reactions of H2La2Ti3O10 with n-C6H13NH2/C2H5OH mixed solution and acid TiO2 sol, followed by irradiating with a high-pressure mercury lamp. The intercalated materials possess a gallery height of 0.46 nm and a specific surface area of 31.58 m2·g−1, which indicate the formation of a porous material. H2La2Ti3O10/TiO2 shows photocatalytic activity for the decomposition of organic dye under irradiation with visible light and the activity of TiO2 intercalated material was superior to the unsupported one.  相似文献   

18.
Nitric oxide (NO) reduction by methanol was studied over La2O3 in the presence and absence of oxygen. In the absence of O2, CH3OH reduced NO to both N2O and N2, with selectivity to dinitrogen formation decreasing from around 85% at 623 K to 50–70% at 723 K. With 1% O2 in the feed, rates were 4–8 times higher, but the selectivity to N2 dropped from 50% at 623 K to 10% at 723 K. The specific activities with La2O3 for this reaction were higher than those for other reductants; for example, at 773 K with hydrogen a specific activity of 35 μmol NO/s m2 was obtained whereas that for methanol was 600 μmol NO/s m2. The Arrhenius plots were linear under differential reaction conditions, and the apparent activation energy was consistently near 14 kcal/mol with CH3OH. Linear partial pressure dependencies based on a power rate law were obtained and showed a near‐zero order in CH3OH and a near‐first order in H2. In the absence of O2, a Langmuir–Hinshelwood type model assuming a surface reaction between adsorbed CH3OH and adsorbed NO as the slow step satisfactorily fitted the data, and the model invoking two types of sites provided the best fit and gave thermodynamically consistent rate constants. In the presence of O2 a homogeneous gas‐phase reaction between O2, NO, and CH3OH occurred to yield methyl nitrite. This reaction converted more than 30% of the methanol at 300 K and continued to occur up to temperatures where methanol was fully oxidized. Quantitative kinetic studies of the heterogeneous reaction with O2 present were significantly complicated by this homogeneous reaction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The catalytic properties of V–Sb/ZrO2 and bulk Sb/V catalysts for the oxidative dehydrogenation of propane were studied. Samples were characterized by nitrogen adsorption, temperature-programmed reduction, temperature-programmed pyridine desorption and photoelectron spectroscopic techniques. Vanadia promotes the transition of tetragonal to monoclinic zirconia and the formation of ZrV2O7. Surface V and Sb oxide species do not appear to interact among them below monolayer coverage, but SbVO4 forms above monolayer. Simultaneously the excess of antimony forms α-Sb2O4. Activity and selectivity show no dependence on the acidity of the catalysts. However, there is a strong dependence of activity/selectivity on composition; surface vanadium species are active for propane oxidative dehydrogenation and the presence of Sb, affording rutile VSbO4 phase makes the system selective to C3H6, this is believed to be related to the redox cycle involving dispersed V5+ species and lattice reduced vanadium site in the rutile VSbO4 phase.  相似文献   

20.
Protonic ceramic ethane fuel cells fed by hydrocarbon fuels are demonstrated to be effective energy conversion devices. However, their practical application is impeded by a lack of anode materials combining excellent catalytic activity with good chemical stability and anti-carbon deposition properties. In this work, in which Sr2Fe1.5Mo0.5O6-δ (SFM) double perovskite oxide is used as the matrix framework, catalytic activity toward H2 and C2H6 oxidation is systematically investigated using Ba-doping. It is found that the concentration of the oxygen vacancy is gradually improved with increased Ba content to significantly enhance catalytic activity toward H2 and C2H6 oxidation. From the series studied, Ba0.6Sr1.4Fe1.5Mo0.5O6-δ exhibits the highest catalytic activity, while the power densities of the electrolyte-supported Ba0.6SFM/BaCe0.7Zr0.1Y0.2O3-δ (BCZY)/La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF)-Sm0.2Ce0.8O2-δ (SDC) single cell reach 205 and 138 mW cm–2 at 750°C in H2 and C2H6, respectively. The ethane conversion rate of the experimental cell is shown to reach 38.4%, while simultaneously maintaining ethylene selectivity at 95%. Furthermore, the single cell exhibits no significant attenuation during stable operation for 20 h, as well as demonstrating excellent anti-coking performance. The proposed results suggest that Ba0.6Sr1.4Fe1.5Mo0.5O6-δ represents a promising anode material for efficient hydrocarbon-related electrochemical conversion to realize the coproduction of ethylene and power in protonic ceramic ethane fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号