首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
采用紧凑满液型蒸发换热器,利用水平传热管叉排管束狭窄空间内早期沸腾强化换热机理将中小热负 荷条件下的自然对流换热转化为旺盛核沸腾换热,换热性能大大优于传统的降膜式蒸发换热器。对水平传热管 管束在受限空间内沸腾强化换热进行实验研究,确认了紧凑满液式水平管蒸发换热器具有良好的换热性能,传 热管在管束中的位置对换热特性已经没有明显影响,随着压力增加,受限空间内沸腾强化换热强化效果显著增 加。  相似文献   

2.
满液型海水淡化蒸发器的换热特性研究   总被引:3,自引:2,他引:3  
海水淡化装置,太阳能或余热吸收式制冷机中的蒸发换热器目前使用管排外降膜式蒸发方式。如将传热管束紧凑排列置于饱和状态液体中则变为满液式蒸发换热器,利用传热管束间受限空间内早期沸腾强化换热机理,将中小热负荷条件下的自然对流换热转化为核沸腾换热,在间隙尺寸适宜时,其换热性能可能优于降膜式蒸发换热器。该研究以盐水为实验工质,对紧凑传热管束受限空间的沸腾换热进行了实验研究,确认了满液式蒸发换热器也具有很好的换热性能,在中小热负荷条件下甚至超过降膜式蒸发换热器。  相似文献   

3.
刘振华  易杰 《太阳能学报》2002,23(6):795-798
采用满液式蒸发换热器,利用强化传热管管束受限空间内早期沸腾强化机理,将中小热负荷条件下的自然对流换热转化为核沸腾换热。其换热性能大大优于降膜式蒸发换热器。对紧凑型滚压表面传热管管束在受限空间内沸腾强化换热进行实验研究,确认了满液式蒸发换热器使用紧凑型滚压强化管束具有良好的换热性能,在小管间距时有显著的沸腾换热复合强化效应。  相似文献   

4.
紧凑传热管束受限空间内沸腾强化换热特性   总被引:1,自引:0,他引:1  
海水淡化装置以及太阳能或余热吸收式制冷机中的蒸发换热器,采用管排外降膜式蒸发方式,它具有很多优点,但管间距离较大,以致尺寸较大,供液方式较复杂。将传热管束紧凑排列置于饱和状态液体中,将其变为满液式蒸发换热器,利用传热管束间受限空间内早期沸腾强化机理,将中小热负荷条件下的自然对流换热转化为核沸腾换热,在间隙尺寸适宜时,其换热性能可能优于降膜式蒸发换热器。对紧凑传热管束在受限空间内沸腾强化换热进行实验研究,确认了满液式蒸发换热器具有良好的换热性能,在中小热负荷条件下甚至超过降膜式蒸发换热器。  相似文献   

5.
强化传热管束狭窄空间内R_11的沸腾换热特性   总被引:2,自引:0,他引:2       下载免费PDF全文
对紧凑型滚压面传热管管束狭窄空间内R-11的沸腾强化换热进行了实验研究,确认了由紧凑型滚压强化管束组成的满液式蒸发换热器具有良好的换热性能。其原理是利用强化传热管管束狭窄空间提前从自然对流换热转换为旺盛核沸腾换热,实验结果确认了管束形成的狭窄空间和强化传热面两种强化技术对沸腾换热的强化效果不能简单叠加。  相似文献   

6.
紧凑高效型水平管束降膜蒸发换热器的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在大气压条件下使用单列和3列叉排光滑管和滚压强化换热管紧凑管束进行了水降膜蒸发换热实验,确认了滚压管在中,低热负荷范围内能够增强换热系数3~4倍,有很好的沸腾强化换热性能。管间距及液膜溅射损失对蒸发换热特性影响很小。同时也考察了单列和3列管束换热特性闯的差异。实验发现这种差异在低雷诺数区域时更加明显。  相似文献   

7.
紧凑传热管束爱限空间内沸腾强化换热特性   总被引:4,自引:3,他引:1  
海水淡化装置以及太阳能或余热吸收式制冷机中的蒸发换热器,采用管排我降膜式蒸发方式,它具有很多优点,但管间距离较大,以致尺寸较大,供液方式较复杂。将传热管束紧凑排列置于饱和状态液体中,将其变为满液式蒸发换热器,利用传热管束间受限空间内早期沸腾强化机理,将中小热负荷条件下的自然对流换热转化为核沸腾换热,在间隙尺寸适宜时,其换热性能可能优于降膜式蒸发换热器。  相似文献   

8.
对电站空冷凝汽器管壳式换热管内氨进行汽液两相流蒸发沸腾的数值模拟,将换热器简化为研究单根水平换热管,分析了不同管壁温度、液氨进口流速、入口温度对沸腾传热性能的影响。确定最优管壁温度、进口流速、入口温度的组合形式。结果表明:壁面温度为302.96K、进口流速为0.1m/s、入口温度为278.15K时换热管的换热效果最佳。  相似文献   

9.
为研究管束内的换热规律与管间距的关系,通过分析不同物理模型的流场、换热系数,验证了针对横掠管束充分发展段采用周期性边界条件和对称性边界条件的合理性。采用FLUENT软件,对一定雷诺数范围内、不同的管间距横掠顺排管束周期性充分发展段模型的流动换热进行数值模拟。结果表明:密集排列管束的换热效果明显要比稀疏排列的管束大,且对于纵向管间距S_n/d=1.25的管束,当横向管间距取S_p/d=2.0左右时,管束间的换热达到最强,可以为提高换热器换热能力提供工程实际参考。最后将数值模拟结果与已有的经验公式以及实验结果进行比较,验证数值模拟方法的正确性。  相似文献   

10.
结合沸腾传热问题,通过凝练并设计实验系统,研究有机工质R245fa在高效蒸发换热管Turbo-EHP管外流动沸腾传热的性能,分析有"孔穴"结构的表面强化管的强化机理。实验中通过改变热源流量、温度以及工质流量等参数,研究其与局部以及平均沸腾换热系数之间的关系。实验结果表明,Turbo-EHP型管前、中、末3段的强化效果不同,在前段气泡热阻对换热性能有一定的影响,中段换热效果达到最优,末段由核态沸腾转为气与壁面的对流换热,换热效果减弱;且随着工质流量的增大,沸腾性能显著增强。  相似文献   

11.
An experimental investigation was carried out on the boiling heat transfer enhancement of water on plain tubes in compact staggered tube-bundle evaporators under atmospheric and sub-atmospheric pressures. The experiment investigated the effects of the tube spacing and positioning and the test pressure on the boiling heat transfer characteristics in restricted spaces of compact tube bundles. The experimental results indicated that for compact tube bundles, the effect of the tube spacing is very significant on the boiling heat transfer. The boiling heat transfer has a maximum enhancement when the tube spacing is so selected as to take an optimum value. The enhanced heat transfer efficiency for the compact bundles would gradually decrease as the test pressure was reduced.  相似文献   

12.
《Applied Thermal Engineering》2002,22(17):1931-1941
In flooded-type tube bundle evaporators with smooth tubes and general tube gaps, both wall superheat and heat flux are generally quite low and boiling cannot occur on the heated tubes. But when the tube gap is quite small or the enhanced heat transfer tubes are employed, the incipient boiling can occur at low heat flux levels and results in a significant heat transfer enhancement effect. This study investigates experimentally enhancement effects by the restricted space comprising the compact tube bundle and the enhanced tubes for boiling heat transfer of pure water and salt-water mixtures under atmospheric pressure. The experimental results show that the small tube gaps can greatly enhance boiling heat transfer for the compact enhanced tube bundle.  相似文献   

13.
In desalinization devices and some heat exchangers making use of low-quality heat energy, both the wall temperature and the heat flux of the heated tubes are generally quite low, hence cannot cause boiling in flooded-type tube bundle evaporators with a large tube spacing. But when the tube spacing is quite small, incipient boiling can occur in the restricted space and results in higher heat transfer than that in a falling-film evaporator or during pool boiling at the same heat flux. This study experimentally investigates the effects of the tube spacing, the positions of tubes, and the salt-water concentration on bundle boiling heat transfer of salt water in the restricted space of the compact tube bundle evaporator under atmospheric pressure. The experimental results provide a restricted space boiling database for salt water in the compact tube bundle. Of particular importance is information concerning the influences of the tube spacing of the tube bundle and the concentration of salt water in desalination evaporators.  相似文献   

14.
ln desalinization devices and some heat exchangers making use of low‐quality heat energy, both wall temperatures and heat fluxes of heated tubes are quite low and generally cannot cause boiling in flooded‐type tube bundle evaporators with a large tube spacing. But when the tube spacing is very small, boiling in restricted spaces can occur and induce a higher heat transfer than that of a falling film or pool boiling at the same heat flux. This study investigated experimentally the effects of tube spacing, positions of tubes, and heating status of tubes as well as surface status (smooth and roll‐worked) on boiling in restricted spaces in compact horizontal tube bundle evaporators under atmospheric pressure. The experimental results provide a restricted space boiling database for water in smooth and enhanced surface tube bundles. Of particular importance is information concerning the influence of tube spacing of flooded‐type tube bundle evaporators, especially for the case of zero pitch, when the neighboring tubes are contacting each other. © 2001 Scripta Technica, Heat Trans Asian Res, 30(5): 394–401, 2001  相似文献   

15.
In order to elucidate boiling heat transfer characteristics for each tube and the critical heat flux (CHF) for tube bundles, an experimental investigation of pool and flow boiling of Freon-113 at 0.1 MPa was performed using two typical tube arrangements. A total of fifty heating tubes of 14 mm diameter, equipped with thermocouples and cartridge heaters, were arrayed at pitches of 18.2 and 21.0 mm to simulate both square in-line and equilateral staggered bundles. For the flow boiling tests the same bundles as were used in pool boiling were installed in a vertical rectangular channel, to which the fluid was supplied with an approach velocity varying from 0.022 to 0.22 m/s. It was found in this study that the boiling heat transfer coefficient of each tube in a bundle was higher than that for an isolated single tube in pool boiling. This enhancement increases for tubes at higher locations, but decreases as heat flux is increased. At heat fluxes exceeding certain values, the heat transfer coefficient becomes the same as that for an isolated tube. As the heat flux approaches the CHF, flow pulsations occurred in the pool boiling experiments although the heat transfer coefficient was invariant even under this situation. The approach velocity has an appreciable effect on heat transfer up to a certain level of heat flux. In this range of heat flux, the heat transfer coefficient exceeds the values observed for pool boiling. An additive method with two contributions, i.e., single phase convection and boiling, was used to predict the heat transfer coefficient for bundles. The predicted results showed reasonable agreement with the measured results. The critical heat flux in tube bundles tended to increase as more bubbles were rising through the tube clearance. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(4): 312–325, 1998  相似文献   

16.
This paper presents a state-of-the-art review of two-phase flow and flow boiling across horizontal tube bundles. The review covers studies related to the dynamic aspects of two-phase flow on the shell side of staggered and in-line tube bundles for upward, downward, and side-to-side flows (i.e. the evaluation of void fraction, two-phase flow behaviors and pressure drops). Heat transfer experimental work and heat transfer prediction methods on tube bundles in cross-flow for plain, low-fin, and enhanced boiling tubes are also covered. The proposed flow pattern maps and semi-empirical correlations for predicting void fraction and frictional pressure drop are critically described. These prediction methods are generally based on experimental results for adiabatic air-water flows, and noticeable discrepancies are revealed in the results provided by them. This study reveals that before now, there were no heat transfer prediction methods that can be recommended as a general design tool. Finally, this study suggests further research focusing on the development of representative databanks and prediction methods.  相似文献   

17.
An experimental study was carried out to understand the flow boiling heat transfer of water based CuO nanofluids in the evaporator of a thermosyphon loop under steady sub-atmospheric pressures. Experimental results show that both the heat transfer coefficient (HTC) and the critical heat flux (CHF) of flow boiling in the evaporator of the thermosyphon loop could be enhanced by substituting nanofluids for water. The operating pressure has apparent impact on the HTC enhancement of nanofluids. However, the operating pressure has negligible effect on the CHF enhancement. There exists an optimal mass concentration of nanoparticles corresponding to the best enhancement effect. Experimental results show that the CHF enhancement results mainly from the existing of the coating layer on the heated surface formed by the sediment of nanoparticles. However, the HTC enhancement results from the effects of both the existing of the coating layer and the change of thermophysical properties of the working fluid.  相似文献   

18.
Complementary heat transfer, pressure distribution, and flow visualization experiments were performed to investigate the effect of yaw on both staggered and in-line tube tanks. The heat transfer measurements were carried out on a row-by-row basis, and pressures were measured internal to the tube banks as well as upstream and downstream. Air was the heat transfer fluid. The visualization experiments revealed that yaw markedly affected the manner in which the flow impinged on the tubes of the in-line array, with a lesser effect of yaw on the flow field in the staggered array. At a given freestream Reynolds number, the Nusselt number generally decreased as the angle of yaw increased. The yaw effect was well correlated for the staggered array, but not so well for the in-line array because of the aforementioned flow field modifications. The in-line-array Nusselt numbers generally exceeded those for the staggered array, a trend which was accentuated at larger yaw. The pressure drop decreased with increasing yaw. In the present operating range, the in-line-array pressure drops were smaller than the corresponding staggered-array values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号