首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a long-period waveguide grating was fabricated in x-cut lithium niobate substrate by patterned annealed proton exchange waveguide fabrication process. The waveguide mode characteristic was evaluated using a charge-coupled device (CCD) camera. It shows that the waveguide is single mode transmission at a wavelength of 1 550 nm. The transmission spectra of the long period waveguide gratings were measured by optical spectrum analyzer (OSA) and show an extinction ratio of ~17 dB and a 3 dB bandwidth of ~10 nm at the resonant wavelength. The resonant wavelength moves toward to the long wavelength direction as the waveguide width-difference increases in the same period, and also shifts toward to the long wavelength direction with the increase of the period in the case of the same waveguide width-difference. The method of fabricating a long period waveguide grating based on a patterned annealed proton exchange technique simplifies the fabrication process, and at the same time, reduces the fabrication cost.  相似文献   

2.
Successful athermalisation of a silica arrayed waveguide grating (AWG) multiplexer using compensating longitudinal strain is reported. Peak wavelength shift of <0.04 nm is recorded over 5-70/spl deg/C in a 40/spl times/100 GHz device, representing a 95% reduction on standard silica AWGs, without introduction of birefringence or compromise of optical crosstalk.  相似文献   

3.
The tuning characteristics of ridge waveguide DBR lasers have been measured under CW and pulsed grating currents. Under CW grating current injection, a maximum tuning range of 2.5 nm was measured. This tuning range was extended to almost 7 nm under pulsed conditions. The increase in the tuning range is explained by the absence of thermal tuning mechanisms for pulsed grating currents and the dominance of thermal tuning in the ridge waveguide structure at large CW grating currents is explicitly shown.<>  相似文献   

4.
高重复频率飞秒激光烧蚀熔融石英制作单偏振微结构波导   总被引:1,自引:0,他引:1  
利用中心波长为1040nm、脉宽为190fs、重复频率在200~5000kHz之间可调的飞秒激光对熔融石英进行微加工。研究了烧蚀阈值随脉冲重复频率、扫描速度的变化规律,阐明不同参数下热扩散效应及热累积效应对烧蚀过程的主导作用。在最优化条件下,制作了双线波导,可以对1040nm激光实现圆形基模传输。进一步制作了椭圆晶胞的六角微结构波导,对1040nm激光可以输出近高斯强度分布的基模,模场面积达到247.48μm2。该微结构波导可实现单偏振传输,消光比达9.05,波导数值孔径约0.017。  相似文献   

5.
李俊一 《光电子.激光》2009,(11):1422-1425
通过有源实时监控系统,采用手动和自动相结合的方法,将光纤、silica基阵列波导光栅(AWG)、1310nm激光器(LD)平台和1490nm、1550nm探测器(PD)平台用紫外固化胶混合集成为一新型单纤三向器。在耦合集成过程中,LD在15mA偏置电流下,三向器的上行出纤功率大约为-4dBm,LD和波导的耦合效率大约40%;当三向器输入1550nm光功率为1mW,PD在2.6V反向偏压下,下行输出光电流大约为76μA,波导和PD的耦合效率大约为42%。三向器中采用了对管PD集成方法。  相似文献   

6.
吴少强  冯向华  卫正统  吴天昊 《红外与激光工程》2019,48(4):422001-0422001(6)
为了实现横截面尺寸为50 m50 m的聚硅氧烷聚合物光波导的耦合转向问题,设计了一种表面覆盖高折射率包层的多层蚀刻光栅耦合器。首先,分析了影响聚合物波导光栅耦合器耦合效率的结构因素;然后,采用在光栅表面蚀刻高折射率层的方法,提高了聚合物波导光栅耦合器的耦合效率;接着,对不同的周期(范围:100~4 000 nm)和不同的蚀刻深度(范围:0~50 000 nm)进行排列组合,形成不同的光栅结构,基于时域有限差分法编写程序,遍历所有情况,得到不同光栅结构下的光场情况以及其耦合效率,找到使耦合效率最大的周期以及蚀刻深度。最后,设计了多层蚀刻的光栅耦合器,进一步提高耦合效率。当蚀刻深度为5 000 nm,光栅周期为2 600 nm时,带高折射率层的聚硅氧烷聚合物光波导均匀光栅耦合器的耦合效率达到最大,为17.2%。采用多层蚀刻的方式,对结构进行优化,其耦合效率能达到37.4%。为聚硅氧烷聚合物光波导在光互连中的实际应用提供了理论依据。  相似文献   

7.
秦政坤  马春生 《半导体学报》2008,29(9):1804-1807
选用氟化聚芳醚FPE聚合物材料,设计并制备出了17×17信道光谱响应平坦化阵列波导光栅(AWG)波分复用器. 实验测试结果表明,器件的中心波长为1550.83nm,波长间隔为0.8nm, 3dB带宽约为0.476nm,插入损耗为13~15dB,串扰低于-21dB.  相似文献   

8.
We demonstrate the wavelength-division multiplexing (WDM) and wavelength-encoding capability of input waveguide grating couplers. The couplers are designed to have a predetermined wavelength response in addition to their conventional function of coupling an incident beam from, e.g., an optical fiber into a planar waveguide. The first example shows the WDM function: separating each of four input wavelengths into a different focus position in the waveguide. The second example shows wavelength encoding: translating a certain wavelength into a desired configuration of focus positions that is different for four different input wavelengths. The couplers were fabricated in an InP waveguide for ~1550-nm wavelength and the separation between the wavelengths was 10 nm. A WDM coupler with a narrower channel separation of 2 nm was also fabricated and successfully demonstrated  相似文献   

9.
A novel broadband IR integrated Er-Yb codoped phosphate glass waveguide amplifier with a long-period waveguide grating is proposed. The long-period waveguide grating, which is used as a gain equalizer, is directly fabricated in the waveguide. The amplifier model is based on propagation and population-rate equations and includes both uniform and pair-induced up-conversion mechanisms. It is solved numerically by combining overlapping integral and Runge-Kutta(RK) algorithm. The intrinsical gain spectrum of the proposed amplifier is obtained by solving a set of rate and power propagation equations and, the deleterious gain peaking is reduced by the long-period waveguide grating filter. The effects of transmission spectrum of the proposed long-period grating on flattening gain are discussed. An average gain  ~ 20dB between 1532 nm and 1565 nm with gain difference of  < 3dB is achieved.  相似文献   

10.
以深刻蚀和热氧化工艺为基础,提出了一种新的阵列波导光栅(AWG)制备技术.这一工艺可使AWG中的波导侧向留有一硅层.采用有限元法和有限差分束传播法分别计算了存在这一硅层时的波导应力分布和有效折射率.结果表明由于这一侧向硅层的存在,使AWG中波导在水平和垂直方向的应力趋于一致,AWG的偏振相关波长明显减小.  相似文献   

11.
The authors report the first demonstration of a semiconductor external cavity waveguide laser, modulated at 2.5 Gbit/s over 100 km of standard optical fibre using a UV written grating in a planar silica waveguide as the feedback element  相似文献   

12.
The thermal behavior of an arrayed‐waveguide grating made of a silica/polymer hybrid waveguide was examined. We experimentally confirmed that the hybrid waveguide is effective to decrease the temperature and polarization dependence of the center wavelength owing to the negative thermo‐optic coefficient of the refractive index and extremely low baking temperature of the polymer cladding. However, the detachment of the polymer cladding from the silica core, which took place either during a repeated heat cycle test or during long‐term storage in atmosphere, was a serious problem for practical use.  相似文献   

13.
非互易波导光栅的滤波特性与应用   总被引:1,自引:0,他引:1  
根据磁光材料的非互易特性和波导光栅的滤波特性,介绍了一种磁光波导光栅的非互易滤波特性及其应用.该磁光波导光栅采用法拉第旋转系数为4800°/cm的掺铈钇铁石榴石(Ce:YIG)材料、单模的脊型补偿墙截面结构和cosine型变迹光栅结构的设计.利用有限差分法和等效折射率法模拟该磁光波导光栅非互易效应的大小,同时结合耦合模理论和转移矩阵法对该磁光波导光栅的非互易滤波特性进行分析.结果表明,对于TE模和1550 nm波段,该磁光波导光栅正反向传输的中心波长偏移0.8 nm,带宽0.4 nm(-20 dB).这种非互易滤波特性可以用来实现波长选择光隔离器和光分插复用器(OADM)等集成光学器件.  相似文献   

14.
贾振红 《激光杂志》2000,21(2):22-22,24
本文研究了用光漂白的方法制备PMMA/DR1聚合物波导光栅的技术 ,并从实验上研究了这种波导光栅对 10 64nm光TE模和TM模的一级衍射效率与光漂白时间的关系。  相似文献   

15.
The design and operation of an InGaAs-GaAs asymmetric cladding ridge waveguide (RW) distributed Bragg reflector (DBR) laser that can be operated in both a single-wavelength mode and a stable, dual-wavelength mode with tunable mode pair separation are reported. The asymmetric cladding RW-DBR laser consists of a conventional DBR laser with an additional, separate tuning contact pad over a part of the grating. The laser operates on a single-wavelength with no current applied to the tuning DBR pad, and dual-wavelength operation is achieved when current is applied to the tuning DBR pad. Tunable mode pair separations as small as ~13 nm and as large as ~17 nm can be achieved in various tuning conditions  相似文献   

16.
报道了SOI基亚微米小尺寸波导光栅器件的设计、制作与测试结果。提出了波导与光栅同步制作的方案,避免了套刻,节约了成本。实验中采用电子束光刻(EBL)、感应耦合等离子体(ICP)刻蚀等先进半导体工艺技术,结合图形补偿等技术手段,完成了亚微米波导光栅的制作。光栅周期为350nm,占空比16∶19。采用该光栅做反射镜,制作了法布里-珀罗(F-P)谐振腔,经测试得到了与模拟相吻合的结果,峰谷比达到11dB。  相似文献   

17.
A multilevel grating coupler based on silicon-on-insulator (SOI) material structure is proposed to realize the coupling between waveguide and waveguide or waveguide and fiber. This coupler is compatible with the current fabrication facilities for complementary metal oxide semiconductor (CMOS) technology with vertical coupling. This structure can realize coupling when the beams with transverse electric (TE) polarization and transverse magnetic (TM) polarization are incident at the same time. The influences of the grating coupler parameters including wavelength, the thickness of waveguide layer, the thickness of SiO2 layer and the number of steps on the TE mode and TM mode coupling efficiencies are discussed. Theory researches and simulation results indicate that the wavelength range is from 1533 nm to 1580 nm when the TE mode and TM mode coupling efficiencies are both more than 40% as the grating period is 0.99 μm. The coupling efficiencies of the incident TE and TM modes are 49.9% and 49.5% at the wavelength of 1565 nm, respectively, and the difference between them is only 0.4%.  相似文献   

18.
基于SOI材料的阵列波导光栅的制作   总被引:1,自引:0,他引:1  
采用ICP刻蚀的方法,在SOI材料上制作出了中心波长为 1. 5509μm、信道间隔为 200GHz的 5×5阵列波导光栅(AWG).测试中心波长与设计值相差 0. 28nm,测试波长间隔与设计值相差在 0. 02nm之内,相邻信道串扰接近10dB,信道插入损耗均匀性为 0. 7dB,测试结果表明该器件能够初步达到分波功能.  相似文献   

19.
We demonstrate a silicon photonic wire filter using asymmetric sidewall long-period waveguide gratings for the first time. The proposed device consists of single-mode waveguide sections, a two-mode section with corrugated gratings, and taper sections to connect them. The operation of this device is based on the codirectional coupling between two core modes. By adopting a high refractive index contrast waveguide, the period and depth of grating are given as 4.44 m and 5 nm, respectively. Thus, the total length of long-period grating is significantly reduced to 260 m. The measured maximum attenuation at the center wavelength is about 13 dB. The bandwidth of the transmission dip is 15 nm. Finally, issues on the design and the performance of our device are discussed.  相似文献   

20.
We present the design of a diffractive grating structure and get the optimal parameters which can achieve more than 75% coupling efficiency (CE) between single-mode fiber and silicon-on-insulator (SOI) waveguide through 2D finite-different time-domain (FDTD) simulation. The proposed architecture has a uniform structure with no bottom reflection element or silicon overlay. The structure, including grating couplers, adiabatic tapers and interconnection waveguides can be fabricated on the SOI waveguide with only a single electron-beam lithography (ICP) step, which is CMOS-compatible. A relatively high coupling efficiency of 47.2% was obtained at a wavelength of 1562 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号