首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
eIF4E, the mRNA cap binding protein, is a master switch that controls eukaryotic translation. To be active, it must bind eIF4G and form the eIF4F complex, which also contains eIF4A. Translation is downregulated by association of eIF4E with 4E-BP, which occupies the eIF4G binding site. Signalling events acting on 4E-BP cause it to dissociate from eIF4E, and eIF4E is then free to bind eIF4G to form the active eIF4F complex. We have solved the structure of the yeast eIF4E/m7Gpp complex in a CHAPS micelle. We determined the position of the second nucleotide in a complex with m7GpppA, and identified the 4E-BP binding site. eIF4E has a curved eight-stranded antiparallel beta-sheet, decorated with three helices on the convex face and three smaller helices inserted in connecting loops. The m7G of the cap is intercalated into a stack of tryptophans in the concave face. The 4E-BP binding site is located in a region encompassing one edge of the beta-sheet, the adjacent helix a2 and several regions of non-regular secondary structure. It is adjacent to, but does not overlap the cap-binding site.  相似文献   

2.
3.
To investigate the molecular basis of the hypertrophic action of angiotensin II (AII) in vascular smooth muscle cells (SMC), we have examined the ability of the hormone to regulate the function of the translational repressor 4E-binding protein 1 (4E-BP1). Addition of AII to quiescent aortic SMC potently increased the phosphorylation of 4E-BP1 as revealed by a decreased electrophoretic mobility and an increased phosphate content of the protein. The stimulation of 4E-BP1 phosphorylation was maximal at 15 min and persisted up to 120 min. Results from affinity chromatography on m7GTP-agarose demonstrated that AII-induced phosphorylation of 4E-BP1 promotes its dissociation from eIF4E in target cells. Further characterization of 4E-BP1 phosphorylation by phosphoamino acid analysis and phosphopeptide mapping revealed that 4E-BP1 is phosphorylated on eight distinct peptides containing serine and threonine residues in AII-treated cells. The combination of results obtained from kinetics experiments, phosphopeptide analysis of in vitro and in vivo phosphorylated 4E-BP1, and pharmacological studies with the MAP kinase kinase inhibitor PD 98059 provided strong evidence that the MAP kinases ERK1/ERK2 are not involved in the regulation of 4E-BP1 phosphorylation in aortic SMC. Together, our results demonstrate that AII treatment of vascular SMC leads to hyperphosphorylation of the translational regulator 4E-BP1 and to its dissociation from eIF4E by a MAP kinase-independent mechanism.  相似文献   

4.
Protein synthesis is altered in both skeletal muscle and liver in response to nutritional status with food deprivation being associated with an inhibition of mRNA translation. In the present study, the effect of food-intake on the initiation of mRNA translation was examined in rats fasted for 18-h and then refed a complete diet. Fasting and refeeding caused alterations in translation initiation in both skeletal muscle and liver that were not associated with any detectable changes in the activity of eIF2B or in the phosphorylation state of eIF2 alpha. Instead, alterations in initiation were associated with changes in the phosphorylation state of eIF4E and/or the association of eIF4E with eIF4G as well as the eIF4E binding protein, 4E-BP1. In muscle from fasted rats, the amount of eIF4E present in an inactive complex with 4E-BP1 was increased 5-fold compared to freely fed control animals. One hour after refeeding a complete diet, the amount of 4E-BP1 bound to eIF4E was reduced to freely fed control values. Reduced association of the two proteins was the result of increased phosphorylation of 4E-BP1. Refeeding a complete diet also stimulated the binding of eIF4E to eIF4G to form the active eIF4F complex. In liver, the amount of eIF4E associated with eIF4G, but not the amount of eIF4E associated with 4E-BP1, was altered by fasting and refeeding. Furthermore, in liver, but not in skeletal muscle, fasting and refeeding resulted in modulation of the phosphorylation state of eIF4E. Overall, the results suggest that protein synthesis may be differentially regulated in muscle and liver in response to fasting and refeeding. In muscle, protein synthesis is regulated through modulation of the binding of eIF4E to eIF4G and in liver through modulation of both phosphorylation of eIF4E as well as binding of eIF4E to eIF4G.  相似文献   

5.
An important aspect of the regulation of gene expression is the modulation of translation rates in response to growth factors, hormones and mitogens. Most of this control is at the level of translation initiation. Recent studies have implicated the MAP kinase pathway in the regulation of translation by insulin and growth factors. MAP kinase phosphorylates a repressor of translation initiation [4E-binding protein (BP) 1] that binds to the mRNA 5' cap binding protein eukaryotic initiation factor (eIF)-4E and inhibits cap-dependent translation. Phosphorylation of the repressor decreases its affinity for eIF-4E, and thus relieves translational inhibition. eIF-4E forms a complex with two other polypeptides, eIF-4A and p220, that promote 40S ribosome binding to mRNA. Here, we have studied the mechanism by which 4E-BP1 inhibits translation. We show that 4E-BP1 inhibits 48S pre-initiation complex formation. Furthermore, we demonstrate that 4E-BP1 competes with p220 for binding to eIF-4E. Mutants of 4E-BP1 that are deficient in their binding to eIF-4E do not inhibit the interaction between p220 and eIF-4E, and do not repress translation. Thus, translational control by growth factors, insulin and mitogens is affected by changes in the relative affinities of 4E-BP1 and p220 for eIF-4E.  相似文献   

6.
Serum stimulation of cultured Xenopus kidney cells results in enhanced phosphorylation of the translational initiation factor (eIF) 4E and promotes a 2.8-fold increase in the binding of the adapter protein eIF4G to eIF4E, to form the functional initiation factor complex eIF4F. Here we demonstrate the serum-stimulated co-isolation of the poly(A)-binding protein (PABP) with the eIF4F complex. This apparent interaction of PABP with eIF4F suggests that a mechanism shown to be important in the control of translation in the yeast Saccharomyces cerevisiae also operates in vertebrate cells. We also present evidence that the signaling pathways modulating eIF4E phosphorylation and function in Xenopus kidney cells differ from those in several mammalian cell types studied previously. Experiments with the immunosuppressant rapamycin suggest that the mTOR signaling pathway is involved in serum-promoted eIF4E phosphorylation and association with eIF4G. Moreover, we could find little evidence for regulation of eIF4E function via interaction with the specific binding proteins 4E-BP1 or 4E-BP2 in these cells. Although rapamycin abrogated serum-enhanced rates of protein synthesis and the interaction of eIF4G with eIF4E, it did not prevent the increase in association of eIF4G with PABP. This suggests that serum stimulates the interaction between eIF4G and PABP by a distinct mechanism that is independent of both the mTOR pathway and the enhanced association of eIF4G with eIF4E.  相似文献   

7.
Initiation factor eIF4E binds to the 5'-cap of eukaryotic mRNAs and plays a key role in the mechanism and regulation of translation. It may be regulated through its own phosphorylation and through inhibitory binding proteins (4E-BPs), which modulate its availability for initiation complex assembly. eIF4E phosphorylation is enhanced by phorbol esters. We show, using specific inhibitors, that this involves both the p38 mitogen-activated protein (MAP) kinase and Erk signaling pathways. Cell stresses such as arsenite and anisomycin and the cytokines tumor necrosis factor-alpha and interleukin-1beta also cause increased phosphorylation of eIF4E, which is abolished by the specific p38 MAP kinase inhibitor, SB203580. These changes in eIF4E phosphorylation parallel the activity of the eIF4E kinase, Mnk1. However other stresses such as heat shock, sorbitol, and H2O2, which also stimulate p38 MAP kinase and increase Mnk1 activity, do not increase phosphorylation of eIF4E. The latter stresses increase the binding of eIF4E to 4E-BP1, and we show that this blocks the phosphorylation of eIF4E by Mnk1 in vitro, which may explain the absence of an increase in eIF4E phosphorylation under these conditions.  相似文献   

8.
The present study was designed to investigate the mechanism through which leucine and histidine regulate translation initiation in L6 myoblasts. The results show that both amino acids stimulate initiation and coordinately regulate the activity of eukaryotic initiation factor eIF2B. The changes in eIF2B activity could be explained in part by modulation of the phosphorylation state of the alpha-subunit of eIF2. The activity changes might also be a result of modulation of the phosphorylation state of the eIF2B epsilon-subunit, because deprivation of either amino acid caused a decrease in eIF2Bepsilon kinase activity. Leucine, but not histidine, additionally caused a redistribution of eIF4E from the inactive eIF4E.4E-BP1 complex to the active eIF4E.eIF4G complex. The redistribution was a result of increased phosphorylation of 4E-BP1. The changes in 4E-BP1 phosphorylation and eIF4E redistribution associated with leucine deprivation were not observed in the presence of insulin. However, the leucine- and histidine-induced alterations in global protein synthesis and eIF2B activity were maintained in the presence of the hormone. Overall, the results suggest that both leucine and histidine regulate global protein synthesis through modulation of eIF2B activity. Furthermore, under the conditions employed herein, alterations in eIF4E availability are not rate-controlling for global protein synthesis but might be necessary for regulation of translation of specific mRNAs.  相似文献   

9.
Initiation in eukaryotes is the rate limiting step of translation. The binding of the mRNA to the 40S ribosomal subunit, which is mediated by the mRNA cap structure, is a key target for control of protein synthesis. The cap binding protein, eIF4E, is the most limiting of all initiation factors and its overexpression in NIH3T3 cells causes malignant transformation. 4E-binding protein 1 (BP1) and 4E-BP2 are small proteins that bind to eIF4E and inhibit translation. Here, 4E-BPs were expressed in cells transformed by eIF4E or by v-src to determine the effect of 4E-BPs on cell growth and tumorigenicity. We show that 4E-BPs cause a significant reversion of the transformed phenotype. Thus, we demonstrate that the eIF4E-binding proteins act as negative regulators of cell growth. We propose that 4E-BPs are members of a class of negative regulators of cell growth acting on the translation machinery of the cell.  相似文献   

10.
Activation of peripheral blood T cells by cross-linking of CD3 results in a rapid and substantial rise in translation rates and proliferation, which coincides with an increase in the cap-binding protein, eIF4E activity. In contrast, immature CD4+ CD8+ double-positive (DP) thymocytes undergo apoptosis in response to anti-CD3 mAb. We have investigated translation initiation in the response of immature thymocytes to activating signals. Activation by anti-CD3 + anti-CD4 of immature CD4+ CD8+ DP thymocytes results in a rapid decrease in protein synthesis. In contrast, similar treatment of CD4+ or CD8+ single-positive (SP) thymocytes results in an increase in protein synthesis. The rate of protein synthesis is linked to the phosphorylation status of eIF4E. Following anti-CD3 + anti-CD4 stimulation, eIF4E phosphorylation strongly decreases in immature DP thymocytes, whereas it increases in mature SP thymocytes. The expression of 4E-BP2, a specific repressor of eIF4E function, is high in DP cells but decreases during maturation, raising the possibility of a role for 4E-BP2 in repressing eIF4E phosphorylation. These data provide evidence for differential regulation of the translational machinery during T cell development.  相似文献   

11.
N4G3, a cell line that overexpresses translation initiation factor eIF4G, one of the components of eIF4F, was made by stable transfection of the human eIF4G cDNA into NIH3T3 cells. The cells expressed 80-100 times greater levels of eIF4G mRNA than did NIH3T3 cells. N4G3 cells formed transformed foci on a monolayer of cells, showed anchorage-independent growth, and formed tumors in nude mice. These results indicate that overexpression of eIF4G caused malignant transformation of NIH3T3 cells. It is also known that overexpression of eIF4E, another component of eIF4F, causes transformation of NIH3T3 cells. However, there was no difference in the amount of eIF4E protein between N4G3 and NIH3T3 cells, indicating that cell transformation does not involve a change in eIF4E levels. The results may be due to an effect of eIF4G on translational control of protein synthesis directed by mRNAs having long 5'-untranslated region.  相似文献   

12.
In the initiation of translation in eukaryotes, binding of the small ribosomal subunit to the messenger RNA results from recognition of the 5' cap structure (m7GpppX) of the mRNA by the cap-binding complex eIF4F. eIF4F is itself a three-subunit complex comprising the cap-binding protein eIF4E, eIF4A, an ATP-dependent RNA helicase, and eIF4G, which interacts with both eIF4A and eIF4E and enhances cap binding by eIF4E. The mRNA 3' polyadenylate tail and the associated poly(A)-binding protein (PABP) also regulate translational initiation, probably by interacting with the 5' end of the mRNA. In yeast and plants, PABP interacts with eIF4G but no such interaction has been reported in mammalian cells. Here, we describe a new human PABP-interacting protein, PAIP-I, whose sequence is similar to the central portion of eIF4G and which interacts with eIF4A. Overexpression of PAIP-1 in COS-7 cells stimulates translation, perhaps by providing a physical link between the mRNA termini.  相似文献   

13.
BD Li  JC McDonald  R Nassar  A De Benedetti 《Canadian Metallurgical Quarterly》1998,227(5):756-6l; discussion 761-3
OBJECTIVE: The objective of this study is to determine if high eukaryotic initiation factor 4E (eIF4E) overexpression (sevenfold elevation or more over benign breast tissue) is associated with a worse clinical outcome. SUMMARY BACKGROUND DATA: Dysregulation of cellular functions by selective overexpression of specific proteins can lead to malignant transformation. The overexpression of eIF4E preferentially increases translation of mRNAs with long, G-C rich 5'-untranslated regions. Selective gene products, such as tumor neoangiogenic factors, ornithine decarboxylase, and cyclin D1, are upregulated. METHODS: One hundred fourteen breast specimens were analyzed and eIF4E overexpression was quantified by Western blot analysis. Quantification for eIF4E protein level was accomplished using a rabbit anti-eIF4E antibody and colorimetric development of Western blots using nitro blue tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate. The blots were scanned and analyzed by densitometry. Treatment, pathologic, and clinical outcome data variables were analyzed. Statistical analysis was performed to determine if eIF4E overexpression is associated with breast cancer clinical outcome. RESULTS: In the 55 benign specimens, the mean eIF4E expression was 1.1+/-0.4 fold (mean +/- standard deviation). All 59 malignant breast carcinoma specimens were noted to have eIF4E overexpression (range, 1.9-fold to 30.6-fold), with a mean overexpression of 10.8+/-6.3-fold. The mean level of eIF4E expression in malignant specimens was higher than benign specimens (p < 0.05, unpaired t test). The degree of eIF4E overexpression appears to be independent of T and N stage. In the 21 patients with eIF4E overexpression of less than sevenfold, there was one cancer recurrence but no cancer-related deaths. In the 38 patients with high eIF4E overexpression (sevenfold or more), 14 patients had breast cancer recurrences (p = 0.03, log rank test), of whom 11 have died from the disease (p = 0.04, log rank test). The average follow-up interval in this study was 40 months. CONCLUSIONS: Patients with stage I to III breast cancer and high eIF4E overexpression had a higher rate of cancer recurrence and a higher rate of cancer-related death when compared to similar-stage breast cancer patients with low eIF4E overexpression. Therefore, eIF4E protein overexpression may be of prognostic value in stage I to III breast carcinoma.  相似文献   

14.
Recombinant flavodoxin from Escherichia coli was uniformly enriched with 15N and 13C isotopes and its oxidized form in aqueous solution investigated by three-dimensional NMR spectroscopy. Nearly complete 1H, 15N and 13C resonance assignments were obtained. The secondary structure was determined from chemical shift, NOE and 3J(HNH alpha) coupling constant data. Like homologous long-chain flavodoxins, E. coli flavodoxin contains a five-stranded parallel beta-sheet and five helices. The beta-strands were found to comprise the residues 3-8, 29-34, 48-56, 80-89, 114-116 and 141-145. The helices comprise residues 12-25, 40-45, 62-73, 98-108 and 152-166. The FMN-binding site was determined by intermolecular NOEs and low-field shifted amide proton resonances induced by the phosphoester group of the cofactor. The data are in good agreement with a previously predicted model of E. coli flavodoxin [Havel, T. F. (1993) Mol. Sim. 10, 175-210]. The analysis of of water-flavodoxin NOEs revealed the presence of two, possibly three, buried hydration water molecules which are located at sites, where homologous flavodoxins from Anacystis nidulans and Anabena 7120 contain conserved hydration water molecules. One of these water molecules mediates hydrogen bonds between the protein backbone and the ribityl chain of the FMN cofactor.  相似文献   

15.
DsbA is the strongest protein disulfide oxidant yet known and is involved in catalyzing protein folding in the bacterial periplasm. Its strong oxidizing power has been attributed to the lowered pKa of its reactive active site cysteine and to the difference in thermodynamic stability between the oxidized and the reduced form. However, no structural data are available for the reduced state. Therefore, an NMR study of DsbA in its two redox states was undertaken. We report here the backbone 1HN, 15N, 13C(alpha) 13CO, 1H(alpha), and 13Cbeta NMR assignments for both oxidized and reduced Escherichia coli DsbA (189 residues). Ninety-nine percent of the frequencies were assigned using a combination of triple (1H-13C-15N) and double resonance (1H-15N or 1H-13C) experiments. Secondary structures were established using the CSI (Chemical Shift Index) method, NOE connectivity patterns, 3(J)H(N)H(alpha) and amide proton exchange data. Comparison of chemical shifts for both forms reveals four regions of the protein, which undergo some changes in the electronic environment. These regions are around the active site (residues 26 to 43), around His60 and Pro 151, and also around Gln97. Both the number and the amplitude of observed chemical shift variations are more substantial in DsbA than in E. coli thioredoxin. Large 13C(alpha) chemical shift variations for residues of the active site and residues Phe28, Tyr34, Phe36, Ile42, Ser43, and Lys98 suggest that the backbone conformation of these residues is affected upon reduction.  相似文献   

16.
The conserved Trp residue within helix 5 of the N-lobe of human serum transferrin (hTF/2N, 40 kDa) has been mutated to Tyr. NMR and CD spectra and energy calculations show that the mutation causes little perturbation of the overall structure of hTF/2N although the chelating agent Tiron removed Fe3+ from the mutant protein about three times faster than from wild-type hTF/2N. 1H-NMR resonances of residues in the Leu122-Trp128-Ile132 hydrophobic patch are assigned both by ring current calculations and with the aid of the mutation. [1H, 15N]-NMR resonances for 11 of the 14 Tyr residues were observed in the spectra of 15N-Tyr-hTF/2N and a resonance for Tyr128 was assignable in spectra of the mutant. The 15N resonance of Y128 was sensitive to oxalate and Ga3+ binding, and Ga3+ binding perturbed 15N resonances for most of the Tyr residues. Since these are well distributed over the N-lobe, it can be concluded that metal-induced structural changes are not merely local to the binding site.  相似文献   

17.
18.
The backbone dynamics of the pleckstrin homology (PH) domain from dynamin were studied by 15N NMR relaxation (R1 and R2) and steady state heteronuclear 15N [1H] nuclear Overhauser effect measurements at 500 and 600 MHz, at protein concentrations of 1.7 mM and 300 microM, and by molecular dynamics (MD) simulations. The analysis was performed using the model-free approach. The method was extended in order to account for observed partial (equilibrium) dimerization of the protein at NMR concentrations. A model is developed that takes into account both rapid monomer-dimer exchange and anisotropy of the over-all rotation of the dimer. The data show complex dynamics of the dynamin PH domain. Internal motions in elements of the secondary structure are restricted, as inferred from the high value of the order parameter (S2 approximately 0.9) and from the local correlation time < 100 ps. Of the four extended loop regions that are disordered in the NMR-derived solution structure of the protein, loops beta 1/beta 2 and beta 5/beta 6 are involved in a large-amplitude (S2 down to 0.2 to 0.3) subnanosecond to nanosecond time-scale motion. Reorientation of the loops beta 3/beta 4 and beta 6/beta 7, in contrast, is restricted, characterized by the values of order parameter S2 approximately 0.9 more typical of the protein core. These loops, however, are involved in much slower processes of motion resulting in a conformational exchange on a microsecond to submillisecond time scale. The motions of the terminal regions (residues 1 to 10, 122 to 125) are practically unrestricted (S2 down to 0.05, characteristic times in nanosecond time scale), suggesting that these parts of the sequence do not participate in the protein fold. The analysis shows a larger sensitivity of the 15N relaxation data to protein microdynamic parameters (S2, tau loc) when protein molecular mass (tau c) increases. The use of negative values of the steady state 15N[1H] NOEs as an indicator of the residues not belonging to the folded structure is suggested. The amplitudes of local motion observed in the MD simulation are in a good-agreement with the NMR data for the amide NH groups located in the protein core.  相似文献   

19.
Human eukaryotic translation initiation factor 4E (eIF4E) binds to the mRNA cap structure and interacts with eIF4G, which serves as a scaffold protein for the assembly of eIF4E and eIF4A to form the eIF4F complex. eIF4E is an important modulator of cell growth and proliferation. It is the least abundant component of the translation initiation machinery and its activity is modulated by phosphorylation and interaction with eIF4E-binding proteins (4E-BPs). One strong candidate for the eIF4E kinase is the recently cloned MAPK-activated protein kinase, Mnk1, which phosphorylates eIF4E on its physiological site Ser209 in vitro. Here we report that Mnk1 is associated with the eIF4F complex via its interaction with the C-terminal region of eIF4G. Moreover, the phosphorylation of an eIF4E mutant lacking eIF4G-binding capability is severely impaired in cells. We propose a model whereby, in addition to its role in eIF4F assembly, eIF4G provides a docking site for Mnk1 to phosphorylate eIF4E. We also show that Mnk1 interacts with the C-terminal region of the translational inhibitor p97, an eIF4G-related protein that does not bind eIF4E, raising the possibility that p97 can block phosphorylation of eIF4E by sequestering Mnk1.  相似文献   

20.
Mammalian eukaryotic translation initiation factor 4F (eIF4F) is a cap-binding protein complex consisting of three subunits: eIF4E, eIF4A, and eIF4G. In yeast and plants, two related eIF4G species are encoded by two different genes. To date, however, only one functional eIF4G polypeptide, referred to here as eIF4GI, has been identified in mammals. Here we describe the discovery and functional characterization of a closely related homolog, referred to as eIF4GII. eIF4GI and eIF4GII share 46% identity at the amino acid level and possess an overall similarity of 56%. The homology is particularly high in certain regions of the central and carboxy portions, while the amino-terminal regions are more divergent. Far-Western analysis and coimmunoprecipitation experiments were used to demonstrate that eIF4GII directly interacts with eIF4E, eIF4A, and eIF3. eIF4GII, like eIF4GI, is also cleaved upon picornavirus infection. eIF4GII restores cap-dependent translation in a reticulocyte lysate which had been pretreated with rhinovirus 2A to cleave endogenous eIF4G. Finally, eIF4GII exists as a complex with eIF4E in HeLa cells, because eIF4GII and eIF4E can be purified together by cap affinity chromatography. Taken together, our findings indicate that eIF4GII is a functional homolog of eIF4GI. These results may have important implications for the understanding of the mechanism of shutoff of host protein synthesis following picornavirus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号