首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Complete combustion of trace amounts of ethylene in food grade CO2 over a Cu–Mn Hopcalite catalyst has been investigated. A mesoporous structure is identified in the catalyst. Low temperature calcined samples are found to be more active than the high temperature calcined ones. The presence of Cu2+ and Mn3+ is essential for the high activity of the catalyst. The Cu–Mn catalyst without a third component deactivates quickly in the reaction stream. However, doping with Al or Mg individually and with Ni–Al or Mg–Al simultaneously increases the lifetime. In situ DRIFTS measurements provide evidence that hydroxyl groups form and adsorb on Mn species. With the doping of Al, Mg and Ni ions, the amount of hydroxyl groups adsorbed reduces and the stability improves. Doping with Al and Mg simultaneously gives the best stability. A synergetic effect between CuO and amorphous Cu–Mn oxide phases is also confirmed.  相似文献   

2.
Mg–Al layered double hydroxide (Mg–Al LDH) was modified with organic acid anions using a coprecipitation technique, and the uptake of heavy metal ions from aqueous solution by the Mg–Al LDH was studied. Citrate·Mg–Al LDH, malate·Mg–Al LDH, or tartrate·Mg–Al LDH, which had citrate3− (C6H5O73−), malate2− (C4H4O52−), or tartrate2− (C4H4O62−) anions intercalated in the interlayer, was prepared by dropwise addition of a mixed aqueous solution of Mg(NO3)2 and Al(NO3)3 to a citrate, malate, or tartrate solution at a constant pH of 10.5. These Mg–Al LDHs were found to take up Cu2+ and Cd2+ rapidly from an aqueous solution at a constant pH of 5.0. This capacity was mainly attributable to the formation of the citrate–metal, malate–metal, and tartrate–metal complexes in the interlayers of the Mg–Al LDHs. The uptake of Cu2+ increased in the order malate·Mg–Al LDH < tartrate·Mg–Al LDH < citrate·Mg–Al LDH. The uptake of Cd2+ increased in the order malate·Mg–Al LDH < tartrate·Mg–Al LDH = citrate·Mg–Al LDH. These differences in Cu2+ and Cd2+ uptake were attributable to differences in the stabilities of the citrate–metal, malate–metal, and tartrate–metal complexes. These results indicate that citrate3−, malate2−, and tartrate2− were adequately active as chelating agents in the interlayers of Mg–Al LDHs.  相似文献   

3.
Vanadium appears to be the element that is most frequent (along with molybdenum) used in the catalyst formulations for oxidative dehydrogenation (ODH) of hydrocarbons and alcohols. In the present work the employment of ODH reaction in the presence of air has been extended for the preparation of vinyl substituted pyridines and thiophenes using vanadium (and for comparison molybdenum) oxide catalysts.The efficiency of vanadium–magnesium oxide catalysts in the production of vinylpyridines and vinylthiophenes has been evaluated. A strong dependence of the yield and selectivity of the latter upon the vanadium (molybdenum) oxide loading and the conditions of heat treatment were observed. In optimized reaction conditions V–Mg–O catalysts at the temperature approximate 450 °C ensured the formation of vinylpyridines and vinylthiophenes with the yield of 40–60% at the selectivity of 90%. In prolonged runs no visible changes in the performance of the catalyst were observed. DTA–DTG, XRD, IR ESR, NMR methods have been used detecting the formation of species of V–Mg–O catalysts that appear to be responsible for the catalyst efficiency in the reactions under consideration.  相似文献   

4.
Mg–Al layered double hydroxides (Mg–Al LDHs) intercalated with benzenesulfonate (BS) and benzenedisulfonate (BDS2–) ions were prepared by coprecipitation and characterized by X-ray diffraction, FT-IR spectroscopy, and chemical analyses. The intercalated BS and BDS2– maintained their intrinsic molecular structures within the Mg–Al LDH interlayers. At low intercalation levels, the benzene ring of BS in BS · Mg–Al LDH was inclined at 30° relative to the plane of the brucite-like layers of Mg–Al LDH. With increasing BS content, the benzene ring adopted an additional configuration perpendicular to the Mg–Al LDH layers. In BDS-intercalated Mg–Al LDH, the benzene ring of BDS2– was tilted at 26° relative to the plane of the Mg–Al LDH layers. Intercalation levels of BDS2– were smaller than those of BS despite the greater charge density of BDS2–, which was likely attributable to a greater degree of electrostatic repulsion between intercalated anions.  相似文献   

5.
A series of Cu–Zn–Zr catalysts were prepared by a coprecipitation method and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, temperature programmed reduction, and N2 adsorption. The catalytic activity of the Cu–Zn–Zr catalyst in the hydrogenation of maleic anhydride using ethanol as a solvent was studied at 220–280 °C and 1 MPa. Maleic anhydride was mainly hydrogenated to γ-butyrolactone and tetrahydrofuran while ethanol dehydrogenated to ethyl acetate. After reduction, CuO species present in the calcined Cu–Zn–Zr catalysts were converted to metallic copper (Cu0). The presence of ZrO2 favored the deep hydrogenation of γ-butyrolactone to tetrahydrofuran while the presence of ZnO was beneficial to the formation of the intermediate product γ-butyrolactone. The molar ratios of the hydrogen produced in ethanol dehydrogenation to the hydrogen consumed in maleic anhydride hydrogenation increased with the increase of the reaction temperature.  相似文献   

6.
A series of samples of La–Cr–O– perovskites were designed as catalysts for diesel soot combustion. They were prepared by using co-precipitation method, at ambient temperature using ammonia followed by a hydrothermal treatment (T = 200 °C, P = 20 atm, t = 24 h). All the chromium-containing precursors were then calcined at high temperature to develop the oxide catalyst. Two phase composition 86%LaCrO3–(14%) La2CrO6 or 94%LaCrO3–6%La2O3 were formed depending on the atmosphere of calcination (oxygen or hydrogen respectively) used. Their respective BET surface areas were 1.1 and 6.5 m2 g−1. Highly crystalline, pure phase of LaCrO3 and La2CrO6 powders were also prepared, with BET area of 4 and 3 m2 g−1, respectively. The crystalline structure and properties of all samples were characterised by X-ray diffraction (XRD), using Rietveld refinement, and temperature-programmed reduction (TPR) techniques. O2-TPD measurements performed on all samples showed the presence of suprafacial, weakly chemisorbed oxygen only for LaCrO3, which contributes actively to soot combustion. TPR study performed on all catalysts showed that while pure LaCrO3 and La2O3 samples did not reduce, the biphasic catalysts showed the presence of oxygen depletion peaks characteristic of lattice oxygen mobility in the samples at ca. 665 °C. Catalytic combustion of diesel soot was studied over all catalysts. The results showed that pure LaCrO3 exhibited significant catalytic activity which was sensitively affected by the modifier La2CrO6 or La2O3.  相似文献   

7.
Mo–V–X (X = Nb, Sb and/or Te) mixed oxides have been prepared by hydrothermal synthesis and heat-treated in N2 at 450 °C or 600 °C for 2 h. The calcination temperature and the presence or absence of Nb determines the nature of crystalline phases in the catalyst. Nb-containing catalysts heat-treated at 450 °C are mostly amorphous solids, while Nb-free catalysts heat-treated at 450 °C and samples treated at 600 °C clearly contain crystalline phases. TPR-H2 experiments show higher H2-consumption on catalysts with amorphous phases. Catalytic results in the oxidative dehydrogenation of ethane indicate that the selective production of the olefin is strongly related to the development of the orthorhombic Te2M20O57 or (SbO)2M20O56 (M = Mo, V, Nb) phase (the so-called M1 phase), which is mainly formed at 600 °C. This active and selective crystalline phase is characterized to show moderate reducibility and active centers enough for the selective oxidative activation of ethane with the minimum quantity possible of active centers for ethylene activation. In this sense, the best yield to ethylene has been achieved on a Mo–V–Te–Nb mixed oxide.  相似文献   

8.
Aerobic oxidation of 1-phenylethanol was investigated over Au deposited on flame-derived Mg–Al and Cu–Mg–Al mixed oxides with different metal ratios. A maximum in acetophenone (1-phenyl-ethanone) yield was observed for catalysts based on both Cu–Mg–Al and Mg–Al mixed oxides depending on their composition. Special attention was given to the elucidation of the role of surface basicity and the influence of the preparation route on the particle size of Au. Adsorption of CO2 from the liquid phase combined with in situ ATR-IR and modulation excitation spectroscopy (MES) was applied to investigate differences in the surface properties of the mixed oxides as a function of the composition. Monodentate and bidentate carbonates were identified, the former being dominant on supports with high Cu contents. In order to obtain a rough quantification of the surface basicity, the retroaldolisation of 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol, DAA) was chosen as a probe reaction indicating that a ratio Mg/Al = 3 results in optimal surface basicity. Moreover, the addition of Cu only lead to a partial loss in retroaldolisation activity, indicating that also the copper sites form basic centers on the surface, however, slightly weaker ones than the corresponding Mg sites. The preparation routes applied (adsorption of colloid, deposition precipitation, and impregnation) lead to different gold particle sizes characterized by mean diameters of ≈2, ≈9 and ≈30 nm, respectively. Catalytic tests using Au/Cu1Mg2Al1Ox catalysts with different mean gold particle size hint towards a particle size dependence of the aerobic oxidation of 1-phenylethanol, showing higher activity for the catalyst containing gold particles of ca. 9 nm compared to those with 2 and 30 nm particles, respectively.  相似文献   

9.
The first complex [Mn(H2O)6][NiCo(TTHA)(H2O)2] · 4H2O 1 (TTHA6− = triethylenetetraminehexaacetate) containing MnII–CoII–NiII three different 3d metal ions is synthesized and magnetic measurement suggests that ferromagnetic interactions occur between Ni2+ ions and rarely found low-spin Co2+ ions.  相似文献   

10.
In the systems CoO–Al2O3–SiO2–H2O and CoO–Al2O3–SiO2–HCl–H2O, at initial pH between 5.5 and 8.1 and temperature of 200 °C, kaolinite is unstable and the following phases form through a dissolution-precipitation process: a) kaolinite and Co-bearing kaolinite; b) Al–Co–serpentine; and c) poorly crystalline phases. Identification of the several phases was carried out from a combination of X-ray diffraction and transmission/analytical electron microscopy.Co–kaolinite shows variable morphologies: a) Platy lath-shaped particles with very low Co content; b) Spherical particles, with relatively constant Co contents (in the order of 0.10 apfu); c) Kaolinite stacks with very variable Co contents (up to 0.25 apfu). Analytical data indicate that the presence of Co(OH)2 in the system favors the dissolution process as well as serpentine formation but it leads to the parallel formation of abundant poorly crystalline phases. The Co-content in kaolinite increased as a function of the Co(OH)2/CoCl2 ratio in the initial systems, and it is reflected by a parallel increase of the b-cell parameter of kaolinite. The average composition of the coexisting Al–Co–serpentine is: (Al1.20Fe0.11Co1.27)(Si1.64Al0.36)O5(OH,Cl)2, with Cl contents in the order of 0.14 apfu.The assemblage Co–kaolinite + Al–Co–serpentine, which appears to be stable at 200 °C, has not been described in natural environments, probably because it requires unusual Al- and Co-rich chemical systems.  相似文献   

11.
The oxidation of alcohols with tert-butylhydroperoxide (TBHP), in the presence of Mn2+ complexes immobilized in the pore channels of mesoporous hexagonal molecular sieves (HMS), were investigated. It was found that immobilized [Mn(bpy)2]2+/HMS is an efficient catalyst for the oxidation of alcohols such as benzyl alcohol, n-hexanol and cyclohexanol. The effects of reaction time, amount of Mn2+ in the catalyst, type of substrates and oxidants in this catalysis system were investigated. At optimum conditions, TBHP is more efficient oxidant with respect to H2O2. Following order has been observed for the percentage of conversions of alcohols: benzylic >1° >2°.  相似文献   

12.
NiO–SDC (samaria-doped ceria) composite powders were synthesized using a urea-combustion technique. The structure, electrical conducting, thermal expansion and mechanical properties of the Ni–samaria-doped ceria (Ni–SDC) cermets have been investigated with respect to the volume contents of Ni. No chemical reaction product between the two constituents was detected for the cermets sintered at 1200–1300 °C for 4 h in air and reduced at 800 °C for 2 h in a 60%N2 + 40%H2 atmosphere. A porous microstructure consisting of homogeneously distributed Ni and SDC phases together with well-connected grains was observed. It was found that the open porosity, electrical conductivity, thermal expansion and bending strength of the cermets are sensitive to the volume content of Ni. The Ni–SDC cermets containing 50–60 vol.% Ni were ascertained to be the optimum composition. These compositions offer sufficient open porosity of more than 30%, superior electrical conductivities of over 1000 S/cm at intermediate temperatures (600–800 °C), a moderate average thermal coefficient of 12.6–13.5 × 10−6 between 100 and 800 °C and excellent bending strength of around 100 MPa.  相似文献   

13.
Heterotrinuclear Ti–Cu–Ru (5) and heterotetranuclear Ti–Cu–Pt–Fe (7) containing complexes are accessible by using {[Ti](CCtBu)2}CuMe (1) ([Ti]=(η5-C5H4SiMe3)2Ti) as key molecule; in 5 and 7, the corresponding early and late transition metal atoms are linked by π-conjugated organic moieties.  相似文献   

14.
Copper doped ceria and ceria–zirconia mixed oxides were synthesized using the citric acid sol–gel method. The temperature-programmed oxidation (TPO) results showed that the Cu modification improved the low-temperature activity and the selectivity to CO2 of ceria for soot oxidation in the presence of NO and excess oxygen even after ageing at 800 °C for 20 h in flow air. Meanwhile, not only the segregation of Cu and sintering of CuO, but also the separation of Ce- and Zr-rich phases worsened the activity of the Cu–Ce–Zr catalyst after the high-temperature calcination.  相似文献   

15.
MnOx–CeO2 mixed oxide catalysts prepared by sol–gel method were tested for the catalytic combustion of chlorobenzene (CB), as a model of chlorinated aromatic volatile organic compounds (CVOCs). MnOx–CeO2 catalysts with the different ratio of Mn/Ce + Mn were found to possess high catalytic activity for catalytic combustion of CB, and MnOx(0.86)–CeO2 was the most active catalyst, on which the complete combustion temperature (T90%) of chlorobenzene was 236 °C. The stability of MnOx–CeO2 catalysts in the CB combustion was investigated. MnOx–CeO2 catalysts with high Mn/Ce + Mn ratios present high stable activity, which is related to their high ability to remove Cl species adsorbed and a large amount of active surface oxygen.  相似文献   

16.
The rate of Fischer–Tropsch synthesis over an industrial well-characterized Co–Ru/γ-Al2O3 catalyst was studied in a laboratory well mixed, continuous flow, slurry reactor under the conditions relevant to industrial operations as follows: temperature of 200–240 °C, pressure of 20–35 bar, H2/CO feed ratio of 1.0–2.5, gas hourly space velocity of 500–1500 N cm3 gcat− 1 h− 1 and conversions of 10–84% of carbon monoxide and 13–89% of hydrogen. The ranges of partial pressures of CO and H2 have been chosen as 5–15 and 10–25 bar respectively. Five kinetic models are considered: one empirical power law model and four variations of the Langmuir–Hinshelwood–Hougen–Watson representation. All models considered incorporate a strong inhibition due to CO adsorption. The data of this study are fitted fairly well by a simple LHHW form − RH2 + CO = apH20.988pCO0.508 / (1 + bpCO0.508)2 in comparison to fits of the same data by several other representative LHHW rate forms proposed in other works. The apparent activation energy was 94–103 kJ/mol. Kinetic parameters are determined using the genetic algorithm approach (GA), followed by the Levenberg–Marquardt (LM) method to make refined optimization, and are validated by means of statistical analysis. Also, the performance of the catalyst for Fischer–Tropsch synthesis and the hydrocarbon product distributions were investigated under different reaction conditions.  相似文献   

17.
A novel solution combustion method has been used to prepare Mg‐Mn ferrites of various compositions, Mg0.9Mn0.1Fe1‐xO4 where = 0.2, 0.4, 0.6, 0.8, and the properties were investigated in the present work. Nano‐size Mg‐Mn ferrite particles with diameter in the range of 8~ 15 nm were successfully formed via this method. The combustion temperature of the oxidation‐reduction was apparently occurred at 200°C. The result of X‐ray diffraction (XRD) analysis indicated that the as‐burnt powder affords a pure single spinel ferrite phase at low temperature. The thermal analysis of nitrate–citrate gels was characterized by DTA‐TG. The TEM and SEM observations give the morphology and microstructure of the products. The dielectric properties of the sintered Mg‐Mn ferrites were investigated by using HP/Agilent 4291B RF impedence/material analyzer. It was found that there was no maximum dielectric loss within the measured frequency range until 1 GHz due to excellent compositional control in this method.  相似文献   

18.
Cu–ZnO and Mn–Cu–ZnO catalysts have been prepared by electrodeposition and tested for the synthesis of higher alcohols via CO hydrogenation. The catalysts were prepared in the form of nanowires and nanotubes using a nanoporous polycarbonate membrane, which served as a template for the electrodeposition of the precursor metals from an aqueous electrolyte solution. Electrodeposition was carried out using variable amounts of Zn(NO3)2, Cu(NO3)2, Mn(NO3)2 and NH4NO3 at different galvanostatic conditions. A fixed bed reactor was used to study the reaction of CO and H2 to produce alcohols at 270 °C, 10–20 bar, H2/CO = 2/1, and 10,000–33,000 scc/h gcat. In addition to methane and CO2, methanol was the main alcohol product. The addition of manganese to the Cu–ZnO catalyst increased the selectivity toward higher alcohols by reducing methane formation; however, CO2 selectivity remained high. Maximum ethanol selectivity was 5.5%, measured as carbon efficiency.  相似文献   

19.
A series of zeolite Y modified with La, Ce, Pr, Nd, Sm and Eu were prepared via ion-exchange, and characterized by XRD, FT-IR and NH3-TPD. It was found that these rare earth metals were encapsulated in the supercage of zeolite Y and resulted in its enhanced acidity. Among them, La-, Ce-, Pr- and Nd-modified zeolite Y exhibited higher activity and stability (than pure HY) for methanol dehydration to dimethyl ether (DME). For DME synthesis directly from CO hydrogenation using the dual Cu–Mn–Zn/modified-Y catalysts, it was found that Cu–Mn–Zn/La–Y and Cu–Mn–Zn/Ce–Y were more active than Cu–Mn–Zn/pure-HY. The conversion of CO on Cu–Mn–Zn/Ce–HY achieved 77.1% in an isothermal fixed bed reactor at 245 °C, 2.0 MPa, H2/CO = 3/2 and 1500 h−1.  相似文献   

20.
A series of MnOx–CeO2 mixed oxide catalysts with different compositions prepared by sol–gel method were tested for the catalytic combustion of chlorobenzene (CB), as a model of volatile organic compounds of chlorinated aromatics. MnOx–CeO2 catalysts with different ratios of Mn/Ce + Mn were found to possess high catalytic activity in the catalytic combustion of CB, and MnOx(0.86)–CeO2 was identified as the most active catalyst, on which the temperature of complete combustion of CB was 254 °C. Effects of systematic variation of reaction conditions, including space velocity and inlet CB concentration on the catalytic combustion of CB were investigated. Additionally, the stability and deactivation of MnOx–CeO2 catalysts were studied by various characterization methods and other assistant experiments. MnOx–CeO2 catalysts with high Mn/Ce + Mn ratios present a stable high activity, which is related to their high ability to remove the adsorbed Cl species and a large amount of active surface oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号