共查询到18条相似文献,搜索用时 62 毫秒
1.
可注射磷酸钙骨水泥作为一种新型人工骨替代材料,以其良好的生物相容性和骨传导性被广泛应用于临床骨缺损和牙缺损的修复.本文介绍了可注射磷酸钙骨水泥的种类和特性,指出了存在的问题和应用前景. 相似文献
2.
3.
采用高级流变扩展系统研究了添加剂种类及其含量对可注射磷酸钙骨水泥(ICPC)流变特性的影响。采用稳态流动实验表征浆体的静态粘度,用触变环面积、应力降低率和屈服应力表征ICPC浆体的触变性,并进行动态频率扫描和动态时间扫描实验动态监测ICPC的粘、弹、塑性变化规律以及水化反应过程流变参数的依时性。结果表明:添加剂并不改变ICPC的粘弹性。水溶性高分子化合物的加入提高了ICPC的粘度和触变性,利于整个体系的稳定;添加剂不同程度上提高了ICPC剪切后的网络结构恢复能力和稳定性,尤其以黄原胶和几丁糖最为明显。在此基础上,评估了加入黄原胶后ICPC形成凝胶的时间,约为2 563~2 600 s。此外,随着黄原胶含量的增加,ICPC触变环面积增加,但形成的网络结构在高剪切状态下并不稳定。 相似文献
4.
一种可注射可降解磷酸钙骨水泥的结构与性能 总被引:2,自引:0,他引:2
通过采用部分结晶磷酸钙和磷酸氢钙制备了新型可注射可降解磷酸钙骨水泥.研究表明:该材料具备优良的可注射性能,并通过添加变性淀粉,显著改善了材料的抗溃散性能,骨水泥的水化产物是直径和长度在分别约为100和1000nm左右的棒状类骨羟基磷灰石.所研制的骨水泥在体温(37℃)条件下凝结较快,而在室温(25℃)和冷藏温度(5℃)可在较长时间保持不固化,这就为骨水泥的临床应用提供了很有利的条件.体外溶血试验、体外细胞毒试验、热原性试验、小鼠的急性毒性试验、微核试验、豚鼠的致敏性试验、小鼠的肌内埋植试验及兔的骨内埋植试验等一系列毒性及生物相容性试验表明该材料无毒副作用,具有良好的生物相容性.复合rhBMP-2的可注射磷酸钙骨水泥植入猕猴椎体后的近远期影像学和组织学观察表明,骨水泥可降解且降解和新骨长入基本同步. 相似文献
5.
研制既具有多孔结构又具有足够力学强度的磷酸钙骨水泥材料是当前骨修复材料研究的热点之一。报道了研制的磷酸钙骨水泥复合材料,在植入初期具有较高的力学强度,植入后可渐渐降解成孔,为骨修复材料的研究提供了新的方法和途径。磷酸钙骨水泥复合材料以磷酸钙骨水泥为基体,在基体中加入具有生物降解性的微球形成复合材料,保证了复合材料植入初期有足够力学强度为新生组织提供支撑,防止自身的坍塌,而具有生物降解性微球的降解速度比磷酸钙骨水泥的固化体快,随着微球的降解在磷酸钙骨水泥基体中就会产生很多三维孔隙,利于细胞粘附生长,血管和神经长入,以及营养成分的渗入和代谢产物排出。这种结构设计使可体内降解成孔的磷酸钙骨水泥既具有足够力学强度又具有多孔结构,还可以通过改变不同材料的比例来调节复合材料的初始力学强度和降解速度。目前已研制成功了壳聚糖微球/磷酸钙骨水泥复合材料、聚羟基丁酸—戊酸酯(PHBV)/磷酸钙骨水泥复合材料,其凝固时间为10~15min,抗压强度达到30~40MPa,孔隙率70%~80%,孔径分布为100~300μm,并对复合材料的降解性、细胞相容性和动物体内植入试验进行了研究,表明所研制的材料具有良好的生物相容性,可降解性和成... 相似文献
6.
7.
磷酸钙骨水泥机械性能的研究 总被引:1,自引:0,他引:1
目前,磷酸钙骨水泥(CPC)的脆性大、强度低限制了其在很多承受应力部位或骨质薄弱部位的应用,提高骨水泥的机械性能是扩展骨水泥应用范围的重要方面.分别从CPC固体粉末的组成、原料的粒度、液固比与孔隙率、羟基磷灰石晶种的加入、固化液组成、有机无机复合、纤维增强等方面来综述提高骨水泥强度的研究. 相似文献
8.
9.
磷酸钙骨水泥的制备及其应用研究 总被引:2,自引:0,他引:2
1 成果介绍 磷酸钙骨水泥(CPC)是由几种磷酸钙盐组成的混合物,用固化液调和后呈糊状物,能根据缺损部位准确填充塑型,其最终成份转化为羟基磷灰石。高的生物相容性和能根据缺损部位准确塑型的特性的统一使其成为新一代骨修复材料,目前国内外尚没有成熟产品。 华东理工大学将化学工程、材料工程、生物医学工程的原理与方法结合起来,利用晶体成核与生长动力学、表面化学、高温 相似文献
10.
人体组织的损伤修复与重建是现代医学力求解决的难题。骨是人体重要的组织器官,虽然具有再生和自修复能力,但对于由肿瘤、外伤、骨疾及骨异常生长所造成的骨缺损,在单纯依靠骨的自修复无法愈合的情况下,则需采用外科手术治疗。骨修复材料的研究与开发是生物材料研究中一个非常活跃的领域。近年来,在骨修复材料领域,可任意塑形并能够在体液条件下快速自固化的磷酸钙骨水泥(CPC)是目前研究较多并被认为是很有发展前途的一种生物活性骨水泥材料。CPC固化后产物的化学成分与骨组织的无机成分相似,晶相结构与骨组织相近,可根据缺损部位任意塑形,操作简便,克服了使用粉料和颗粒料成型困难,力学性能差,易于流失等问题,这些特点在很大程度上符合临床骨缺损修复的要求,从而具有广阔的应用前景。本文就可注射型磷酸钙骨水泥(ICPC)以及高性能化复合骨水泥的最新研究进展作一介绍。 相似文献
11.
Shimada Y Chow LC Takagi S Tagami J 《Journal of research of the National Institute of Standards and Technology》2010,115(4):233-241
Previous studies reported premixed calcium phosphate cements (CPCs) that were stable in the package and form hydroxyapatite (HA) as the product after exposure to an aqueous environment. These cements had setting times of greater than 60 min, which are too long to be useful for some clinical applications. The present study investigated properties of fast-setting HA-forming premixed CPCs that initially consisted of two separate premixed pastes: (1) finely ground (1.0 μm in median size) dicalcium phosphate anhydrous (DCPA) mixed with an aqueous NaH(2)PO(4) solution, 1.5 mol/L or 3.0 mol/L in concentration, and (2) tetracalcium phosphate consisting of combinations of particles of two different size distributions, 5 μm (TTCP5) and 17 μm (TTCP17) in median size, mixed with glycerin. Equal volume of Pastes 1 and 2 were injected with the use of atwo-barrel syringe fitted with a static mixer into sample molds. The molar Ca/P ratio of combined paste was approximately 1.5. Cements were characterized in terms of setting time (Gilmore needle), diametral tensile strength (DTS), and phase composition (powder x-ray diffraction, XRD). Setting times were found to range from (4.3 ± 0.6 to 68 ± 3) min (mean ± sd; n = 3), and 1-d and 7-d DTS values were from (0.89 ± 0.08 to 2.44 ± 0.16) MPa (mean ± sd; n = 5). Both the NaH(2)PO(4) concentration and TTCP particle size distribution had significant (p < 0.01) effects on setting time and DTS. Powder XRD analysis showed that low crystallinity HA and unreacted DCPA were present in the 1-day specimens, and the extent of HA formation increased with increasing amount of TTCP5 in the TTCP paste. CONCLUSION: Injectable HA-forming premixed CPCs with setting times from 4 to 70 min can be prepared by using DCPA and TTCP as the ingredients. Compared to the conventional powder liquid cements, these premixed CPCs have the advantages of being easy to use and having a range of hardening times. 相似文献
12.
Satoshi Hirayama Shozo Takagi Milenko Markovic Laurence C. Chow 《Journal of research of the National Institute of Standards and Technology》2008,113(6):311-320
Calcium phosphate cements (CPCs) were prepared using mixtures of tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCPA), with TTCP/DCPA molar ratios of 1/1, 1/2, or 1/3, with the powder and water as the liquid. Diametral tensile strength (DTS), porosity, and phase composition (powder x-ray diffraction) were determined after the set specimens have been immersed in a physiological-like solution (PLS) for 1 d, 5 d, and 10 d. Cement dissolution rates in an acidified PLS were measured using a dual constant composition method. Setting times ((30 ± 1) min) were the same for all cements. DTS decreased with decreasing TTCP/DCPA ratio and, in some cases, also decreased with PLS immersion time. Porosity and hydroxyapatite (HA) formation increased with PLS immersion time. Cements with TTCP/DCPA ratios of 1/2 and 1/3, which formed calcium-deficient HA, dissolved more rapidly than the cement with a ratio of 1/1. In conclusion, cements may be prepared with a range of TTCP/DCPA ratios, and those with lower ratio had lower strengths but dissolved more rapidly in acidified PLS. 相似文献
13.
α-磷酸三钙-磷酸四钙生物骨水泥的研究 总被引:3,自引:0,他引:3
对α-磷酸三钙 (α TCP) 磷酸四钙 (TTCP)体系的胶凝特性进行了研究。探讨了α TCP TTCP复合骨水泥的水化硬化过程、水化产物、水化反应动力学、反应转化率、硬化体微观结构等变化规律及强度变化的根本原因。 相似文献
14.
Severe skin wounds cause great problems and sufferings to patients. In this study, an injectable wound dressing based on strontium ion cross-linked starch hydrogel (SSH) was developed and evaluated. The good inject-ability of SSH made it easy to be delivered onto the wound surface. The good tissue adhesiveness of SSH ensured a firm protection of the wound. Besides, SSH supported the proliferation of NIH/3T3 fibroblasts and facilitated the migration of human umbilical vein endothelial cells (HUVECs). Importantly, SSH exhibited strong antibacterial effects on Staphylococcus aureus (S. aureus), which could prevent wound infection. These results demonstrate that SSH is a promising wound dressing material for promoting wound healing. 相似文献
15.
以溶胶-凝胶法制备的介孔硼硅酸盐生物活性玻璃微球(MBGS)作为固相, 海藻酸钠(SA)溶液作为液相,开发了一种可注射复合骨水泥。对MBGS中氧化硼/氧化硅的比例对其质构性能及骨水泥的可操作性、抗压强度和生物活性的影响进行表征。实验结果表明, 随着硼含量的增加, MBGS的比表面积从161.71 m2/g增大至214.28 m2/g, 平均孔径以及总孔容也随之增长, 加速了玻璃相中钙离子的释放, 使得玻璃与SA的快速交联, 改善了骨水泥可操作性能和力学性能, 凝固时间由21 min缩短至9 min, 抗压强度由3.4 MPa提升至4.1 MPa, 体外矿化性能也随之提高。综合各方面性能表现, BC-30骨水泥兼具良好的可操作性能、力学性能和体外矿化能力, 是最合适的骨水泥组分。总之, 提高MBGS的质构性能是增强复合骨水泥的可操作性、抗压强度和生物活性的有效方法。 相似文献
16.
Sugawara A Fujikawa K Hirayama S Takagi S Chow LC 《Journal of research of the National Institute of Standards and Technology》2010,115(4):277-290
Previous studies showed that water-free, premixed calcium phosphate cements (Pre-CPCs) exhibited longer hardening times and lower strengths than conventional CPCs, but were stable in the package. The materials hardened only after being delivered to a wet environment and formed hydroxyapatite as the only product. Pre-CPCs also demonstrated good washout resistance and excellent biocompatibility when implanted in subcutaneous tissues in rats. The present study evaluated characteristics of Pre-CPCs when implanted in subcutaneous tissues (Study I) and used for repairing surgically created two-wall periodontal defects (Study II). Pre-CPC pastes were prepared by combining CPC powders that consisted of CPC-1: Ca(4)(PO(4))(2)O and CaHPO(4), CPC-2: α-Ca(3)(PO(4))(2) and CaCO(3) or CPC-3: DCPA and Ca(OH)(2) with a glycerol at powder-to-liquid mass ratios of 3.5, 2.5, and 2.5, respectively. In each cement mixture, the Ca to P molar ratio was 1.67. The glycerol contained Na(2)HPO(4) (30 mass %) and hydroxypropyl methylcellulose (0.55 %) to accelerate cement hardening and improve washout resistance, respectively. In Study I, the test materials were implanted subcutaneously in rats. Four weeks after the operation, the animals were sacrificed and histopathological observations were performed. The results showed that all of the implanted materials exhibited very slight or negligible inflammatory reactions in tissues contacted with the implants. In Study II, the mandibular premolar teeth of mature beagle dogs were extracted. One month later, two-wall periodontal bone defects were surgically created adjacent to the teeth of the mandibular bone. The defects were filled with the Pre-CPC pastes and the flaps replaced in the preoperative position. The dogs were sacrificed at 1, 3 and 6 months after surgery and sections of filled defects resected. Results showed that one month after surgery, the implanted Pre-CPC-1 paste was partially replaced by bone and was converted to bone at 6 months. The pockets filled with Pre-CPC-2 were completely covered by newly formed bone in 1 month. The Pre-CPC-2 was partially replaced by trabecular bone in 1 month and was completely replaced by bone in 6 months. Examination of 1 month and 3 month samples indicated that Pre-CPC-2 resorbed and was replaced by bone more rapidly than Pre-CPC 1. Both Pre-CPC pastes were highly osteoconductive. When implanted in periodontal defects, Pre-CPC-2 was replaced by bone more rapidly than Pre-CPC-1. 相似文献
17.
N,O-羧甲基壳聚糖用于磷酸钙骨水泥调和液的研究 总被引:4,自引:0,他引:4
本文论述了直接提取的溶液态羧甲基壳聚糖作为磷酸钙骨水泥调和液的可行性.通过将提取的溶液态羧甲基壳聚糖和常规的羧甲基壳聚糖粉末进行红外光谱的分析比较,证实了溶液态的羧甲基壳聚糖和粉末状的产品具有一致的成分和取代度.此外,通过抗压强度测试和生物全身急性毒性测试表明溶液态的羧甲基壳聚糖能更好地改善抗压强度,并能够满足生物医用材料对生物毒性的要求. 相似文献
18.
Markovic M Chow LC 《Journal of research of the National Institute of Standards and Technology》2010,115(4):257-265
The osteoconductive and possibly osteoinductive characteristics of OCP increased the interest in preparation of bone graft materials that contain OCP in its composition. Calcium phosphate cements (CPCs) were prepared using a mixture of α-tricalcium phosphate (α-TCP) and dicalcium phosphate anhydrous (DCPA), with α-TCP / DCPA molar ratio of 1/1 and distilled water or 0.5 mol / L phosphate aqueous solution (pH = 6.1 ± 0.1) as the cement liquid. Hardening time was (30 ± 1) min for the CPC mixed with water and (5 ± 1) min for the CPC mixed with phosphate solution. Diametral tensile strength (DTS), porosity (P), and phase composition (powder x-ray diffraction) were determined after the hardened specimens had been immersed in a physiological-like solution (PLS) for 1 d, 3 d, and 7 d. In CPC specimens prepared with water, calcium hydroxyapatite (HA) was formed and DTS and P were (9.03 ± 0.48) MPa and (37.05 ± 0.20) vol % after 1 d, respectively, and (9.15 ± 0.45) MPa and (37.24 ± 0.63) vol % after 3 d, respectively. In CPC specimens prepared with phosphate solution OCP and HA were formed and DTS and P were (4.38 ± 0.49) MPa and (41.44 ± 1.25) vol % after 1 d, respectively,(4.38 ± 0.29) MPa and (42.52 ± 2.15) vol % after 3 d, respectively, and (4.30 ± 0.60) MPa and (41.38 ± 1.65) vol % after 7 d, respectively. For each group DTS and P did not change with PLS immersion time. DTS was significantly higher and P was significantly lower for CPCs prepared with water. HA formation slightly increased with immersion time from 40 mass % after 1 d to 50 mass % after 3 d in CPCs prepared with water. OCP + HA formation increased with immersion time from 30 mass % after 1 d to 35 mass % after 3 d and to 45 mass % after 7 d in CPCs prepared with 0.5 mol / L phosphate solution. 相似文献