首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Shear force detection is a common method of tip-sample distance control in scanning near-field optical microscopy. Shear force is the force acting on a laterally oscillating probe tip near a surface. Despite its frequent use, the nature of the interaction between tip and sample surface is a matter of debate. In order to investigate the problem, approach curves, i.e. amplitude and phase of the tip oscillation as a function of the tip-sample distance, are studied in terms of a harmonic oscillator model. The extracted force and damping constants are influenced by the substrate material. The character of the interaction ranges from elastic to dissipative. The interaction range is of atomic dimensions with a sharp onset. Between a metal-coated tip and a Cu sample, a power law for the force-distance curve is observed.  相似文献   

2.
A. Naber 《Journal of microscopy》1999,194(2-3):307-310
The dynamic force distance control for scanning near-field optical microscopy on the basis of a tuning fork as piezoelectric force sensor is remarkably sensitive. In order to gain a better understanding of this sensitivity the vibrational properties of the tuning fork are modelled within the framework of two coupled harmonic oscillators. As a result, the effective force constant of the tuning fork at resonance frequency is determined. Furthermore, the influence of the additional mass by the attachment of the near-field probe is investigated.  相似文献   

3.
Naber A 《Journal of microscopy》1999,194(PT 2-3):307-310
The dynamic force distance control for scanning near-field optical microscopy on the basis of a tuning fork as piezoelectric force sensor is remarkably sensitive. In order to gain a better understanding of this sensitivity the vibrational properties of the tuning fork are modelled within the framework of two coupled harmonic oscillators. As a result, the effective force constant of the tuning fork at resonance frequency is determined. Furthermore, the influence of the additional mass by the attachment of the near-field probe is investigated.  相似文献   

4.
In this paper, the conjugate gradient method of minimization with an adjoint equation is successfully applied to solve the inverse problem in estimating the shear force between the tapered probe and sample during the scanning process of scanning near-field optical microscope (SNOM). While knowing the available deflection at the tapered probe tip, the determination of the interaction shear force is regarded as an inverse vibration problem. In the estimating processes, no prior information on the functional form of the unknown quantity is required. The accuracy of the inverse analysis is examined by using the simulated exact and inexact measurements of deflection at the tapered probe tip. Numerical results show that good estimations on the interaction shear force can be obtained for all the test cases considered in this study.  相似文献   

5.
The experimental results of the direct measurement of the absolute value of interaction force between the fiber probe of a scanning near-field optical microscope (SNOM) operated in shear force mode and a sample, which were performed using combined SNOM-atomic force microscope setup, are discussed for the out-of-resonance fiber probe excitation mode. We demonstrate that the value of the tapping component of the total force for this mode at typical dither amplitudes is of the order of 10 nN and thus is quite comparable with the value of this force for in resonance fiber probe excitation mode. It is also shown that for all modes this force component is essentially smaller than the usually neglected static attraction force, which is of the order of 200 nN. The true contact nature of the tip-sample interaction during the out of resonance mode is proven. From this, we conclude that such a detection mode is very promising for operation in liquids, where other modes encounter great difficulties.  相似文献   

6.
Hillenbrand R 《Ultramicroscopy》2004,100(3-4):421-427
Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10 nm scale, independent of the wavelength used (λ=633 nm and 10 μm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si3N4. Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics—a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics.  相似文献   

7.
Martin OJ 《Journal of microscopy》1999,194(PT 2-3):235-239
We present three-dimensional simulations of the image formation process in near-field optical microscopy. Our calculations take into account the different components of a realistic experiment: an extended metal coated tip, a subwavelength sample and its substrate. We investigate all possible detection (transmitted, reflected and collected field) and scanning (constant height, constant gap) modes. Our results emphasize the strong influence of the tip motion on the experimental signal. They also show that it is possible, by controlling the polarization of both the illumination and the detected field, to strongly reduce these artefacts.  相似文献   

8.
We present three-dimensional simulations of the image formation process in near-field optical microscopy. Our calculations take into account the different components of a realistic experiment: an extended metal coated tip, a subwavelength sample and its substrate. We investigate all possible detection (transmitted, reflected and collected field) and scanning (constant height, constant gap) modes. Our results emphasize the strong influence of the tip motion on the experimental signal. They also show that it is possible, by controlling the polarization of both the illumination and the detected field, to strongly reduce these artefacts.  相似文献   

9.
Oh YJ  Jo W  Kim MG  Kyu Park H  Hyun Chung B 《Ultramicroscopy》2006,106(8-9):775-778
Optical response and topography of fluorescent latex beads both on flat self-assembled monolayer and on a micron-patterned surface with poly(dimethylsiloxane) are studied. Scanning near-field optical microscopy and atomic force microscopy were utilized together for detecting fluorescence and imaging topography of the patterned latex beads, respectively. As a result, the micro-patterned latex beads where a specific chemical binding occurred show a strong signal, whereas no signals are observed in the case of nonspecific binding. With fluorescein isothiocyanate (FITC), it is convenient to measure fluorescence signal from the patterned beads allowing us to monitor the small balls of fluorescent latex.  相似文献   

10.
A non‐optical bimorph‐based tapping‐mode force sensing method for tip–sample distance control in scanning near‐field optical microscopy is developed. Tapping‐mode force sensing is accomplished by use of a suitable piezoelectric bimorph cantilever, attaching an optical fibre tip to the extremity of the cantilever free end and fixing the guiding portion of the fibre to a stationary part near the tip to decouple it from the cantilever. This method is mainly characterized by the use of a bimorph, which carries out simultaneous excitation and detection of mechanical vibration at its resonance frequency owing to piezoelectric and anti‐piezoelectric effects, resulting in simplicity, compactness, ease of implementation and lack of parasitic optical background. In conjugation with a commercially available SPM controller, tapping‐mode images of various samples, such as gratings, human breast adenocarcinoma cells, red blood cells and a close‐packed layer of 220‐nm polystyrene spheres, have been obtained. Furthermore, topographic and near‐field optical images of a layer of polystyrene spheres have also been taken simultaneously. The results suggest that the tapping‐mode set‐up described here is reliable and sensitive, and shows promise for biological applications.  相似文献   

11.
A piezoresistive micro cantilever is applied to monitor the displacement of an optical fibre probe and to control tip–sample distance. The piezoresistive cantilever was originally made for a self-sensitive atomic force microscopy (AFM) probe and has dimensions of 400 µm length, 50 µm width and 5 µm thickness with a resistive strain sensor at the bottom of the cantilever. We attach the piezoresistive cantilever tip to the upper side of a vibrating bent optical fibre probe and monitor the resistance change amplitude of the strain sensor caused by the optical fibre displacement. By using this resistance change to control the tip–sample distance, the two-cantilever system successfully provides topographic and near-field optical images of standard samples in a scanning near-field optical microscopy (SNOM)/AFM system. A resonant characteristic of the two-cantilever system is also simulated using a mechanical model, and the results of simulation correspond to the experimental results of resonance characteristics.  相似文献   

12.
A near-field scanning optical module has been constructed as an accessory for a Nanoscope IIIa commercial scanning probe microscope. Distance feedback and topographic registration are accomplished with an uncoated optical fibre scanning tip by implementation of the shear force technique. The tip is driven by a piezoelectric actuator at a resonance frequency of 8–80 kHz. A laser diode beam is scattered by the tip and detected by a split photodiode, with lock-in detection of the difference signal. The amplitude ( r ) and phase (τ) responses were characterized as a function of the calibrated tip–sample separation. Using an r cos τ feedback signal, imaging of pUC18 relaxed circular plasmid DNA spread on mica precoated with cetylpyridinium chloride was achieved. The apparent width (28 ± 5 nm) was approximately four times that achieved by scanning force measurements with the same instrument; the apparent height of the DNA (0.6 ± 0.3 nm) was similar with the two techniques. These results demonstrate the applicability of the shear force signal for imaging biological macromolecules according to topography and in conjunction with the optical signals of a near-field scanning optical microscope (NSOM).  相似文献   

13.
Extended Mie theory is used to investigate the scattering and extinction of evanescent waves by small spherical particles and aggregates of such particles. Metallic, dielectric and metal-coated dielectric particles are taken into consideration. In contrast to plane-wave excitation, p- and s-polarized spectra differ in the case of evanescent waves due to the inherent asymmetry of both polarizations. Furthermore, contributions from higher multipoles are strongly enhanced, compared with plane-wave excitation, and the enhancement factors are polarization dependent. The corresponding changes in the scattering and extinction spectra are most pronounced in cases where higher multipoles exhibit resonances in the spectral range considered. This applies, for example, to morphological resonances of dielectric particles with size parameters > 1. The effect of the surface, where the evanescent wave is generated by total internal reflection, on the scattering and extinction spectra is investigated via numerical field calculations employing the multiple multipole method. In an application to apertureless near-field optical microscopy, the variation of the scattered power is calculated when a silicon particle is scanned across a silver particle in the evanescent field.  相似文献   

14.
Extended Mie theory is used to investigate the scattering and extinction of evanescent waves by small spherical particles and aggregates of such particles. Metallic, dielectric and metal-coated dielectric particles are taken into consideration. In contrast to plane-wave excitation, p - and s -polarized spectra differ in the case of evanescent waves due to the inherent asymmetry of both polarizations. Furthermore, contributions from higher multipoles are strongly enhanced, compared with plane-wave excitation, and the enhancement factors are polarization dependent. The corresponding changes in the scattering and extinction spectra are most pronounced in cases where higher multipoles exhibit resonances in the spectral range considered. This applies, for example, to morphological resonances of dielectric particles with size parameters > 1. The effect of the surface, where the evanescent wave is generated by total internal reflection, on the scattering and extinction spectra is investigated via numerical field calculations employing the multiple multipole method. In an application to apertureless near-field optical microscopy, the variation of the scattered power is calculated when a silicon particle is scanned across a silver particle in the evanescent field.  相似文献   

15.
A compact sensor head based on scanning force microscopy (SFM) using cantilever probes has been developed. The idea is to replace the microscope objective of a conventional optical microscope by this compact module and turn the optical microscope into a scanning force and near-field optical microscope with subwavelength resolution. We describe our concept and present initial results showing images of the object’s optical properties and surface topography recorded simultaneously.  相似文献   

16.
Applications of field-enhanced near-field optical microscopy   总被引:1,自引:0,他引:1  
Metal nanostructures such as sharp tips can enhance emission yields through shape-induced local field enhancement. The enhancement originates from two mechanisms: surface plasmons and electrostatic lightening rod effects. We present fluorescence imaging using the strong local field created at the apex of a gold tip and demonstrate optical resolution of 25 nm. The enhancement effect gives also rise to photoemission from the tip itself. Measured spectra of the tip emission show a broad band continuum together with a second-harmonic peak. Both continuum and second-harmonic are confined at the apex of the tip. We find that, depending on the spectral position, the photoluminescence originates either from intraband or from interband transitions. The nonlinear response can be described by a single dipole oscillating at the second-harmonic frequency and oriented along the tip axis. These unique properties can be used to map focal fields distributions.  相似文献   

17.
Shear force near‐field microscopy on biological samples in their physiological environment loses considerable sensitivity and resolution as a result of liquid viscous damping. Using a bimorph‐based cantilever sensor incorporating force feedback, as recently developed by us, gives an alternative force detection scheme for biological imaging in liquid. The dynamics and sensitivity of this sensor were theoretically and experimentally discussed. Driving the bimorph cantilever close to its resonance frequency with appropriate force feedback allows us to obtain a quality factor (Q‐factor) of up to 103 in water, without changing its intrinsic resonance frequency and spring constant. Thus, the force detection sensitivity is improved. Shear force imaging on mouse brain sections and human skin tissues in liquid with an enhanced Q‐factor of 410 have shown a high sensitivity and stability. A resolution of about 50 nm has been obtained. The experimental results suggest that the system is reliable and particularly suitable for biological cell imaging in a liquid environment.  相似文献   

18.
Nano-scale structures of the YOYO-1-stained barley chromosomes and lambda-phage DNA were investigated by scanning near-field optical/atomic force microscopy (SNOM/AFM). This technique enabled precise analysis of fluorescence structural images in relation to the morphology of the biomaterials. The results suggested that the fluorescence intensity does not always correspond to topographic height of the chromosomes, but roughly reflects the local amount and/or density of DNA. Various sizes of the bright fluorescence spots were clearly observed in fluorescence banding-treated chromosomes. Furthermore, fluorescence-stained lambda-phage DNA analysis by SNOM/AFM demonstrated the possibility of nanometer-scale imaging for a novel technique termed nano-fluorescence in situ hybridization (nano-FISH). Thus, SNOM/AFM is a powerful tool for analyzing the structure and the function of biomaterials with higher resolution than conventional optical microscopes.  相似文献   

19.
The control of tip-to-sample distance in atomic force microscopy (AFM) is achieved through controlling the vertical tip position of the AFM cantilever. In the vertical tip-position control, the required z motion is commanded by laser reading of the vertical tip position in real time and might contain high frequency components depending on the lateral scanning rate and topographical variations of the sample. This paper presents a dual-actuator tip-motion control scheme that enables the AFM tip to track abrupt topographical variations. In the dual-actuator scheme, an additional magnetic mode actuator is employed to achieve high bandwidth tip-motion control while the regular z scanner provides the necessary motion range. This added actuator serves to make the entire cantilever bandwidth available for tip positioning, and thus controls the tip-to-sample distance. A fast programmable electronics board was employed to realize the proposed dual-actuator control scheme, in which model cancellation algorithms were implemented to enlarge the bandwidth of the magnetic actuation and to compensate the lightly damped dynamics of the cantilever. Experiments were conducted to illustrate the capabilities of the proposed dual-actuator tip-motion control in terms of response speed and travel range. It was shown that while the bandwidth of the regular z scanner was merely a small fraction of the cantilever's bandwidth, the dual-actuator control scheme led to a tip-motion control system, the bandwidth of which was comparable to that of the cantilever, where the dynamics overdamped, and the motion range comparable to that of the z scanner.  相似文献   

20.
The shear force between a gold and a graphite sample and an approaching near-field optical probe using tuning fork detection is studied in detail. The adiabatic and dissipative contributions are clearly distinguished by monitoring the amplitude as well as the phase of the tip vibration when approaching the surfaces. Their relative strengths vary differently but characteristically with the distance. The interaction starts in case of graphite at a much larger distance. The adiabatic contribution is larger in the case of gold, whereas graphite shows mostly dissipative interaction. Measurements at various temperatures are performed using a gold sample, showing a dependence of the shear force on the temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号