首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
探讨了白酒厂发酵丢糟原料NaOH.过氧乙酸预处理后,多酶复配糖化制备糖液的工艺。研究发现,白酒丢糟经预处理(2%NaOH,固液比1:10(w:v),85℃,90min;6%过氧乙酸,固液比1:5(w:v),75qC,90min),固体中96.20%纤维素被保留,71.90%木质素被去除;预处理后固体部分利用多酶复配糖化,在主要添加纤维素酶NS22086的基础上,补充B.葡萄糖苷酶NS22118、木聚糖酶NS22083、复合酶NS22119、复合酶NS22002及葡萄糖淀粉酶NS22035,经48h糖化水解,酶解液中总糖(以还原糖计)、葡萄糖和木糖浓度分别为107.30g/L、57.44g/L和16.53g/L。该条件最终得到酶解液中总糖、葡萄糖和木糖产率分别为659.13mg/g、317.22mg/g和96.01mg/g(预处理后干丢糟)的较高水平,为进一步利用生物质材料降解糖制备燃料酒精、食用酒精、食用冰乙酸以及焦糖色的工艺提供了重要参考。  相似文献   

2.
《食品与发酵工业》2019,(20):182-189
利用葡聚糖淀粉酶NS22035回收鲜醋糟中的残余淀粉,得到富含葡萄糖的糖液用做后续同步糖化发酵前期酵母菌糖液的消耗,该过程回收淀粉所得还原糖质量浓度为18. 2 g/L,鲜醋糟中30. 1%(质量分数)的粗淀粉被回收。利用响应面试验设计方法探讨Na OH预处理干醋糟的4个因素对还原糖产率的影响,得到干醋糟最佳预处理条件,即Na OH浓度2. 2 mol/L、固液比1∶14(g∶m L)、处理时间88 min、处理温度70℃。在该条件下,后续采用正交试验优化同步糖化发酵生产酒精的试验条件,在酵母菌接种量14%、摇床转速140 r/min、处理温度30℃、处理时间84 h的条件下可得到34. 7 g/100 g的酒精产率,进行成本核算后,初步实现了醋糟生产酒精的可行性。该研究报道了利用醋糟发酵生产酒精的技术方案,为实际生产中醋糟的有效循环利用提供了理论与数据支撑。  相似文献   

3.
高粱酒糟糖化处理及其暗发酵产氢性能   总被引:1,自引:0,他引:1  
高粱酒糟是白酒生产过程中产生的富含纤维素的副产品,其暗发酵产氢被认为是较有前景的处理方法之一。为提高高粱酒糟氢气转化效率,探讨了不同预处理方式对高粱酒糟糖化率及糖化液发酵产氢的影响。结果表明,纤维素酶解是酒糟糖化的最优处理方式,其酶解条件为:固液比1∶15(g∶mL)、纤维素酶添加量4 000 U/g,对应酶解液还原糖产率为17.21%,比对照组提高了341.28%。此外,糖化液产氢结果表明,与纤维素酶单一酶解方法相比,纤维素酶-淀粉酶耦合法的酒糟糖化液产氢率更高,对应的氢气产率为51.56 mL/g。扫描电镜结果显示,酒糟的纤维结构在酶解过程中明显被破坏,说明纤维素酶解促进了纤维素向糖类物质转化。  相似文献   

4.
以白酒丢糟为原料制备活性炭。采用响应面分析法对NaOH溶液预处理去除丢糟蛋白的工艺参数进行优化,确定最佳预处理条件为:碱液浓度2.5 mol/L,碱煮时间2 h,固液比1∶4,此时蛋白残留量为1.116%。采用ZnCl2活化后高温煅烧法制备活性炭,得出最佳制备条件为:ZnCl2质量浓度50%,料液比1∶2,煅烧温度600℃,煅烧时间120 min。在最佳工艺条件下制得活性炭的亚甲基蓝吸附值最高可达到208 mg/g。  相似文献   

5.
以白酒酒糟为原料发酵产丁二酸   总被引:1,自引:0,他引:1  
以白酒酒糟为原料,经酶法糖化,由Actinobacillus succinogenes发酵生产丁二酸。纤维素酶或糖化酶分别水解白酒糟,在酶反应的最适温度和pH条件下,酒糟中的纤维素和淀粉的水解率分别为44.04%和92.26%,相应还原糖对酒糟的得率分别为110 mg/g和126 mg/g酒糟;但2种酶以分步或同步方式水解白酒糟时,酶水解反应受到产物抑制作用,总还原糖得率仅约为150 mg/g酒糟。采用分步糖化发酵工艺,400 g/L白酒糟经两种酶水解后,得到还原糖58.4 g/L,该水解液发酵产丁二酸28.8 g/L,丁二酸产率72 mg/g酒糟;而采用先用纤维素酶水解白酒糟,再用糖化酶和A.succinogenes同步糖化发酵的工艺,240 g/L白酒糟产丁二酸浓度为32 g/L,产率133 mg/g酒糟。以白酒酒糟为原料发酵生产丁二酸,利用了废弃物,无需外源添加氮源,无需对原料进行酸碱预处理,具有一定的应用前景。  相似文献   

6.
通过改进传统蒸汽爆破预处理方法,利用两步法对小麦秸秆进行预处理.在蒸汽爆破前加入乙酸溶液预浸渍,有效的提高了后续同步糖化发酵的水平.采用乙酸预浸渍气爆预处理后的整个草浆和固形物同步糖化发酵乙醇浓度分别达到25.Sg/L、30.6g/L,分别达到葡萄糖乙醇理论产率的77%、90%;相比传统气爆,草浆和固形物同步糖化发酵乙醇浓度分别仅为17.5g/L、29.2g/L,葡萄糖转化为乙醇仅分别达到理论产率的63%、85%.通过提高固形物浓度到20%,乙酸预浸渍气爆处理后的固形物同步糖化发酵乙醇浓度可达67.3g/L,达到葡萄糖乙醇理论产率的96%.乙酸预浸渍气爆预处理能有效的减少抑制物的生成,提高木质纤维素结构破坏程度以及糖的回收率.  相似文献   

7.
通过L9(34)正交试验研究了白地霉、黑曲霉和绿色木霉联合发酵白酒丢糟生产蛋白质饲料的发酵条件,结果表明,最佳发酵条件为:接种12%混合菌液,添加3%硫酸铵,30℃条件下发酵7d,发酵后的白酒丢糟蛋白质含量达28.88%,比发酵前白酒丢糟高14.1%.  相似文献   

8.
为了充分利用酿酒业的副产品丢糟,进一步提高丢糟生产清香型白酒的质量,应用高产酯酿酒酵母,通过单因素试验,分别考察配糟比、酵母接种量、发酵时间对丢糟加粮再发酵的影响。结果表明,最佳的工艺条件为配糟比1∶3,酵母接种量0.5亿个/g,发酵时间6 d;在此发酵条件下,酒精度为8.8%vol,乙酸乙酯产生量可达506.5 mg/L,乳酸乙酯产生量可达560.8 mg/L。  相似文献   

9.
菊芋原料同步糖化发酵生产丁二酸   总被引:4,自引:0,他引:4       下载免费PDF全文
对菊芋原料发酵生产丁二酸进行了研究,用 Actinobacillus succinogenes 和 Aspergillus niger 同步糖化发酵,发现同步糖化发酵效果优于糖化后再发酵,在同步糖化发酵过程中还原糖质量浓度始终保持在10~40 g/L,可以避免高浓度的还原糖对 A.succinogenes 的抑制.5 L搅拌罐中同步糖化补料分批发酵96 h产丁二酸98.2 g/L,对消耗糖产率95.4%,生产强度1.02 g/(L·h) .  相似文献   

10.
研究了一株诱变米根霉Rhizopus oryzae LS-1利用丢糟水解液发酵生产乳酸的可行性。首先考察R.oryzae LS-1利用葡萄糖和木糖的糖代谢差异特性,并通过正交实验优化丢糟水解液发酵生产乳酸的工艺参数。结果表明,R.oryzae LS-1能代谢利用葡萄糖和木糖,且二者存在协同互补作用,有利于乳酸生成和糖酸转化,可用于木质纤维原料的乳酸生产。丢糟水解液发酵生产乳酸的实验表明,氯化铵是R.oryzae LS-1适宜的氮源。在接种量为3.0%、p H为6.5、发酵时间为96h、Ca CO3添加量为80g/L的条件下,乳酸生成浓度为13.27g/L,糖利用率为79.61%。说明诱变菌株R.oryzae LS-1具备发酵丢糟水解液制备乳酸的潜力。  相似文献   

11.
以竹材制浆厂备料工段产生的废弃竹屑为原料,采用蒸汽爆破预处理且提取半纤维素后的竹基纤维素为碳源,同时对预处理前后竹屑采用扫描电子显微镜&能谱仪和激光粒度分析仪进行表征;用分步水解发酵工艺,结合高效液相色谱对发酵L-乳酸工艺关键参数进行了分析,探究了该碳源生物转化L-乳酸的潜力。结果表明,蒸汽爆破预处理提高了原料酶解还原糖释放量,在总固体(total solids, TS)质量浓度140 g/L、酶添加量60 FPU/g、酶解54 h条件下糖化,总糖质量浓度可达31.19 g/L。将糖化液用于发酵试验,在起始糖质量浓度19.43 g/L,发酵初始pH 6.5、菌株接种量5%、发酵17 h条件下,L-乳酸质量浓度可达6.28 g/L,其糖酸转化率高达80.87%。综上,该实验为竹基纤维素的利用提供了高值化途径参考。  相似文献   

12.
为了找到适合爆破预处理白酒丢糟的溶剂,以提高纤维素酶作用及同步糖化发酵酒精产率。以白酒厂丟糟为原料,自制爆破装置,采用化学分析与扫描电镜、X射线衍射相结合的方法,研究了物料分别经不同溶剂爆破与同步糖化发酵制备酒精的工艺。结果表明,物料经丁酮蒸气爆破处理后,固体中纤维素含量最高为41.85%,半纤维素含量为14.23%。底物10%(质量分数),经过120 h同步糖化发酵,酒精产量可达到理论酒精产量的46.21%。SEM与XRD显示,不同溶剂爆破后白酒丢糟纤维形态结构受到不同程度的破坏,纤维素的结晶度降低,有利于同步糖化发酵的进行。  相似文献   

13.
通过响应面法和正交实验分别优化了麦秆的碱预处理工艺条件和同步糖化发酵工艺条件。首先以麦秆为底物通过Box-behnken设计研究了预处理温度、NaOH质量分数、预处理时间和底物质量浓度对总还原糖含量的影响;然后通过正交实验对碱预处理麦秆的同步糖化发酵工艺进行优化。结果表明:最佳碱预处理工艺条件为预处理温度137.64℃、NaOH质量分数6.72%、预处理时间41.93 min和底物质量浓度9.23 g/L,此时总还原糖含量最高,为496.00 mg/g,为未预处理底物的5.12倍,说明碱预处理可以较好地提高麦秆的糖化率;最佳同步糖化发酵工艺条件为发酵温度39℃、酵母接种量0.1%、酶质量浓度0.2 g/L和发酵时间2 d,此时乙醇含量最高,为22.84g/L。  相似文献   

14.
芦苇适应性广、生物产量高,是一种很有潜力的可再生能源作物,但芦苇质地紧密,难以直接酶解,该研究采用蒸汽爆破对芦苇进行预处理,并对稀硫酸、NaOH及稀H2SO4-蒸汽爆破预处理液及酶糖化液糖组分进行比较分析.结果表明,稀H2SO4-蒸汽爆破预处理效果最好,1% H2SO4浸泡芦苇10h,2.0MPa-120s汽爆处理,预处理糖化率为37.8%,酶解糖化率达82%;糖液组分分析也显示,稀H2SO4-蒸汽爆破预处理能得到更多的可发酵糖,酶解液糖浓度31.22mg/mL,葡萄糖和木糖含量分别占52.75%和43.39%.  相似文献   

15.
采用正交试验研究了硫酸水解丢糟的最佳工艺与皮状丝孢酵母发酵丢糟水解液生产微生物油脂的最佳工艺.结果表明:最佳丢糟酸水解工艺条件为硫酸添加量8% (9 mol/L),水解温度90℃,水解时间1.5 h;在最佳水解条件下,丢糟水解液中还原糖含量为1.51%.最佳皮状丝孢酵母发酵丢糟水解液生产微生物油脂的工艺条件为接种量8%,发酵温度32℃,蔗糖添加量0.8%,发酵时间3d;在最佳发酵条件下,菌体的油脂含量可达24.86%.  相似文献   

16.
采用酸阻滞法对白酒丢糟浓硫酸降解糖液的糖酸分离进行了研究。结果显示,阴离子树脂UMA150可用于含较高硫酸浓度的白酒丢糟降解液的糖酸分离。在实验室室温条件下,树脂柱径高比为1∶15,进样体积180 mL,硫酸浓度25.30 g/100 mL,糖浓度4.42 g/100 mL,在糖酸分离点(分离过程中pH急剧下降点)前后分别以5 mL/min、7 mL/min的流速进行糖酸分离,能得到较好的分离效果。硫酸和糖的分离度达到0.845,糖和硫酸回收率分别为83.49%和69.26%。  相似文献   

17.
以降解白酒丢糟中的可降解多糖转化为燃料酒精为目的,通过初步研究浓硫酸对白酒丢糟中的粗纤维及粗淀粉的二次降解发现,得出干丢糟转化为还原糖的降解条件为:70%(m/m)的H2SO4与干丢糟按7∶5的体积质量比混合,糊化30min,然后加水使硫酸的浓度稀释成22%(m/m)左右,在85℃的水浴条件下处理混合物1h,干丢糟的降解率可达到0.35g/g。在白酒鲜丢糟的浓硫酸降解放大试验中,用80%H2SO4与鲜丢糟干物质的体积质量比为1∶1比例混合,鲜丢糟还原糖降解率亦达到0.33g/g(鲜丢糟干物质计)较高水平。  相似文献   

18.
在2个单级悬浮床生物反应器中,以双酶法制备的玉米粉糖化液为底物,进行了废液循环条件下自絮凝颗粒酵母乙醇连续发酵与清液发酵对比实验。对于废液循环实验,每隔5d将收集到的发酵液集中精馏处理,得到的废糟液直接用于玉米粉调浆。实验结果表明,在稀释速率0.05 h-1,废糟液全循环条件下,装置达到稳定状态后,乙醇、残还原糖、无机磷、无机氮、蛋白和总固型物浓度分别稳定在9.4%(v/v)、26 g/L、11 g/L、3.36 g/L、0.136 g/L和85 g/L左右;乙醇浓度与对照组相差不大,但残还原糖、无机磷及总固形物在废糟液循环使用的初期出现积累,但随运行时间的延长而趋于稳定,说明对酵母生长和乙醇发酵没有产生明显影响。  相似文献   

19.
为实现玉米秸秆高效转化可发酵糖,提升玉米秸秆生产纤维素乙醇竞争力,对碱过氧化氢法预处理后高浓玉米秸秆半同步糖化发酵生产燃料乙醇的工艺进行了研究。建立底物浓度与酶解糖得率关系模型,以确定适宜的底物浓度。向预处理后的玉米秸秆中添加吐温20,考察其酶解过程特性,确定吐温20最适添加量。结果表明,酶解最适条件为:底物质量浓度200 g/L,吐温20添加量8%(ω)。在该条件基础上,对酵母种龄、吐温20对酵母发酵影响、半同步糖化发酵预酶解时间、半同步糖化发酵的时间、发酵温度进行了研究,确定了半同步糖化发酵的工艺条件为:种龄16 h,吐温20添加量5%(ω),预酶解时间9 h,半同步糖化发酵时间7 d,温度34℃。在最佳条件下,发酵7 d后,乙醇浓度达到23. 64 g/L,乙醇转化率达到76. 54%,较对照组(不添加吐温20)转化率提升3. 41%。该工艺条件下能实现高浓玉米秸秆高效转化可发酵糖及乙醇的目的。  相似文献   

20.
纤维质水解产糖的成本高昂是目前纤维素乙醇生产工业化的瓶颈性问题,所以底物在低酶用量条件下浓醪水解糖化的研究值得探讨。该文尝试采用添加剂和辅助酶强化酶解过程,开展分批补料式浓醪底物水解糖化的研究。以碱催化常压甘油有机溶剂预处理甘蔗渣为底物,实验通过单因素和正交实验确定添加剂浓度为:10 mg/g干基的BSA、25 mg/g干基的吐温20及10 mg/g干基茶皂素,确定木聚糖酶添加量0. 6 mg/g干基。为达到总基质浓度350 g/L,实验确立初始基质浓度190 g/L,分别于7 h、10 h及13 h分别补料60、50及50 g/L。该酶解体系在6 FPU/g干基质条件下酶解48 h的可发酵性糖接近220 g/L,葡萄糖和木糖质量浓度分别高达160. 7 g/L和58. 7 g/L。分批补料策略依然是实现基质浓醪水解的理想方式,使用添加剂及辅助酶能显著促进纤维基质的浓醪酶解,这为后续纤维素乙醇浓醪发酵提供可能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号