首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We report on a GaN metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) using atomic-layer deposited (ALD) Al2O3 as the gate dielectric. Through further decreasing the thickness of the gate oxide to 3.5 nm and optimizing the device fabrication process, a device with maximum transconductance of 150 mS/mm was produced. The drain current of this 0.8 μm gate-length MOS-HEMT could reach 800 mA/mm at +3.0 V gate bias. Compared to a conventional AlGaN/GaN HEMT of similar design, better interface property, lower leakage current, and smaller capacitance-voltage (C-V) hysteresis were obtained, and the superiority of this MOS-HEMT device structure with ALD Al2O3 gate dielectric was exhibited. Supported by the National Natural Science Foundation of China (Grant No. 60736033) and the National Basic Research Program of China (“973“) (Grant No. 51327020301)  相似文献   

2.
Fabrication of enhancement-mode high electron mobility transistors on AlGaN/GaN heterostructures grown on sapphire substrates is reported. These devices with 1 μm gate-length, 10 nm recessed-gate depth, 4 μm distance of source and drain exhibit a maximum drain current of 233 mA/mm at 1.5 V, a maximum transconductance of 210 mS/mm, and a threshold voltage of 0.12 V. The threshold voltage of these devices increased to 0.53 V after 500°C 5 min annealing in N2 ambient. The saturation drain current and transconductance of 15 nm recessed-gate depth reduced compared to those of 10 nm recessed-gate depth, but the threshold voltage increased to 0.47 V. The relations between threshold voltage, controlling ability of gate and recess depth were validated by testing C-V structures on AlGaN/GaN heterostructures with different etching depth. Supported by the National Natural Science Foundation of China (Grant No. 60736033)  相似文献   

3.
Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high-pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality μc-Si:H films have been achieved with a high deposition rate of 7.8 ?/s at a high pressure. The V oc of 560 mV and the FF of 0.70 have been achieved for a single-junction μc-Si:H p-i-n solar cell at a deposition rate of 7.8 ?/s. Supported by the National Natural Science Foundation of China (Grant No. 50662003) and the State Development Program for Basic Research of China (Grant No. G2000028208)  相似文献   

4.
A kind of erbium doped photosensitive fiber (EDPF) was proposed and fabricated, whose core was made of double layers named photosensitive layer and erbium doped layer. The double-layer core design can overcome difficulties in fabrication of EDPF with single core design, i.e. the conflict between the high consistency rare earth doping and high consistency germanium doping. A sample was fabricated through the modified chemical vapor deposition method combined with solution doping technique. The peak absorption coefficient was 48.80 dB/m at 1.53 μm, the background loss was lower than 0.1 dB/m, and the reflectivity of the fiber Brag gratings (FBG) written directly on the sample fiber was up to 97.3% by UV-writing technology. Moreover, a C band tunable fiber laser was fabricated using the sample fiber, in which a uniform FBG was written directly on EDPFs as a reflector. A single wavelength lasing with a maximum wavelength tuning range of 1555.2–1558.0 nm was achieved experimentally. Within this tuning range, the full-width at half maximum (FWHM) of the laser output was smaller than 0.015 nm and the side mode suppression ratio (SMSR) was better than 50 dB. Supported by the National High Technology Research and Development Program of China (863 Project) (Grant No. 2007AA01Z258), the National Natural Science Foundation of China (Grant No. 60771008), Program for New Century Excellent Talents in University (Grant No. NCET-06-0076), Beijing Natural Science Foundation (Grant No. 4052023), and the Beijing Jiaotong University Foundation (Grant No. 2006XM003)  相似文献   

5.
We report herein a rational approach for fabricating metal suspending nanostructures by nanoimprint lithography (NIL) and isotropic reactive ion etching (RIE). The approach comprises three principal steps: (1) mold fabrication, (2) structure replication by NIL, and (3) suspending nanostructures creation by isotropic RIE. Using this approach, suspending nanostructures with Au, Au/Ti or Ti/Au bilayers, and Au/Ti/Au sandwiched structures are demonstrated. For Au nanostructures, straight suspending nanostructures can be obtained when the thickness of Au film is up to 50 nm for nano-bridge and 90 nm for nano-finger patterns. When the thickness of Au is below 50 nm for nano-bridge and 90 nm for nano-finger, the Au suspending nanostructures bend upward as a result of the mismatch of thermal expansion between the thin Au films and Si substrate. This leads to residual stresses in the thin Au films. For Au/Ti or Ti/Au bilayers nanostructures, the cantilevers bend toward Au film, since Au has a larger thermal expansion coefficient than that of Ti. While in the case of sandwich structures, straight suspending nanostructures are obtained, this may be due to the balance of residual stress between the thin films. Supported by the National Natural Science Foundation of China (Grant No. 20573002) and the Major State Basic Research Development Program of China (973Pprogram) (Grant No. 2001CB6105)  相似文献   

6.
Microwave-induced thermo-acoustic tomography (MITAT) is a promising technique with great potential in biomedical imaging. It has both the high contrast of the microwave imaging and the high resolution of the ultrasound imaging. In this paper, the proportional relationship between the absorbed microwave energy distribution and the induced ultrasound source distribution is derived. Further, the time reversal mirror (TRM) technique based on the pseudo-spectral time domain (PSTD) method is applied to MITAT system. The simulation results show that high contrast and resolution can be achieved by the TRM technique based on PSTD method even for the received signals with very low signal-to-noise ratio (SNR) and the model parameter with random fluctuation. Supported by the National Natural Science Foundation of China (Grant No. 60771042), the National Hi-Tech Research and Development Program (“863” Project) (Grant No. 2007AA12Z159), 111 Project (Grant No. B07046), SiChuan Excellent Youth Foundation (Grant No. 08ZQ026-039), Program for New Century Excellent Talents in University of China and Program for Changjiang Scholars  相似文献   

7.
The high-dense nanocrystalline BaTiO3 (BT) ceramics with grain size smaller than 100 nm have been successfully prepared by the two step sintering and the spark plasma sintering (SPS) process. The successive transitions in nanograin BT ceramics from rhombohedral to orthorhombic, tetragonal and cubic transitions, similar to those in coarse BT ceramics, were revealed by in-situ temperature dependent Raman spectrum. The multiphase coexistence and the diffused phase transition character were demonstrated in the 8 nm nanocrystalline BT ceramics. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2002CB613301) and the National Natural Science Foundation of China (Grant No. 50872093)  相似文献   

8.
A novel asymmetrical twin-core photonic crystal fiber was proposed, whose effective overlap core area A eff can be designed to synchronize the variation of Raman gain coefficient with respect to frequency. This fiber possesses a higher and flatter Raman gain efficiency coefficient curve r R=g R/A eff over a specified band of wavelength than a conventional fiber. Therefore, it is a good candidate of gain medium for a flat, broad gain band fiber Raman amplifier. It was numerically demonstrated that for the Raman gain efficiency r R, relative fluctuations of less than 2.2% and 5.7% are achievable in the C (1530−1565 nm) band and L (1565−1625 nm) band, respectively. Supported by the National Natural Science Foundation of China (Grant Nos. 60588502, 60607005, 60877033), the Science and Technology Bureau of Sichuan Province (Grant No. 2006z02-010-3) and the Youth Science and Technology Foundation of UESTC (Grant No. JX0628)  相似文献   

9.
With the rapid development of functional magnetic resonance imaging (fMRI) technology, the spatial resolution of fMRI data is continuously growing. This provides us the possibility to detect the fine-scale patterns of brain activities. The established univariate and multivariate methods to analyze fMRI data mostly focus on detecting the activation blobs without considering the distributed fine-scale patterns within the blobs. To improve the sensitivity of the activation detection, in this paper, multivariate statistical method and univariate statistical method are combined to discover the fine-grained activity patterns. For one voxel in the brain, a local homogenous region is constructed. Then, time courses from the local homogenous region are integrated with multivariate statistical method. Univariate statistical method is finally used to construct the interests of statistic for that voxel. The approach has explicitly taken into account the structures of both activity patterns and existing noise of local brain regions. Therefore, it could highlight the fine-scale activity patterns of the local regions. Experiments with simulated and real fMRI data demonstrate that the proposed method dramatically increases the sensitivity of detection of fine-scale brain activity patterns which contain the subtle information about experimental conditions. Supported by Chair Professors of Changjiang Scholars Program and CAS Hundred Talents Program, National Program on Key Basic Research Projects (Grant No. 2006CB705700), National High-Tech R&D Program of China (Grant No.2006AA04Z216), National Key Technology R&D Program (Grant No. 2006BAH02A25), Joint Research Fund for Overseas Chinese Young Scholars (Grant No.30528027), National Natural Science Foundation of China (Grant Nos.30600151, 30500131 and 60532050), and Natural Science Foundation of Beijing (Grant Nos. 4051002 and 4071003)  相似文献   

10.
A new transient stability margin is proposed based on a new expression of dynamic security region (DSR) which is developed from the existing expression of DSR. Applications of the DSR based transient stability margin to contingency ranking and screening are discussed. Simulations in the 10-machine 39-bus New England system are performed to show the effectiveness of the proposed DSR based transient stability margin. Supported by Chinese National Basic Research Program (Grant No. 2004CB217900), the National Natural Science Foundation of China (Grant Nos. 50525721, 50595411, 50707035) and China Postdoctoral Science Foundation (Grant No. 20060400518)  相似文献   

11.
The effect of coagulation temperature on the morphology, microstructures and mechanical properties of dihydroxy poly(p-phenylene benzobisoxazole) (DHPBO) fibers was investigated during dry-jet wet-spinning process, in which the coagulation bath concentration and drawn ratio were kept as 10 wt% of PPA in water and 1.7, respectively. The structures and mechanical properties of the as-spun DHPBO fibers were characterized by FTIR, XRD, SEM, and single fiber tensile testing. The results indicated that in PPA/H2O coagulation system, when the coagulation temperature was 25°C, highly crystallized DHPBO as-spun fibers possessing fine crystallites, circular and smooth morphology, and excellent mechanical properties could be achieved. Supported by the National Natural Science Foundation of China (Grant No. 50673017), Shanghai Leading Academic Discipline Project (Grant No. B603) and the Program of Introducing Taleuts of Discipline to University of People’s Republic of China (“111” Program) (Grant No. 111-2-04)  相似文献   

12.
A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field, the generation and distribution of field aligned currents (FACs), and the appearance of Alfvén waves. Considering the contribution of ions to the initial current, the topology of the obtained magnetic field turns to be more complex. In some cases, it is found that not only the traditional B y quadrupole structure but also a reversal B y quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region, which are inconsistent with the Hall MHD theory with the total initial current carried by electrons. Several other interesting features are also emerged. First, motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth d i =c p . In the non-Hall effect region, the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However, in the Hall effect region, magnetic field lines are bent in −y direction, mainly controlled by the motion of electrons, then B y is generated. Second, FACs emerge as a result of the appearance of B y . Compared with the prior Hall MHD simulation results, the generated FACs shift in +y direction, and hence the dawn-dusk symmetry is broken. Third, the Walén relation in our simulations is consistent with the Walén relation in Hall plasma, thus the presence of Alfvén wave is confirmed. Supported by the National Natural Science Foundation of China (Grant Nos. 40474058 and 40536030), the Key Project of the National Natural Science Foundation of China (Grant No. 40390152), Chinese Fundamental Research Project (Grant No. G200000784), Chinese Key Research Project (Grant No. 2006CB805305), and the Key Displine Project of Beijing  相似文献   

13.
The phonon spectrum of ordered zincblende Si50Ge50 alloy is calculated by ab initio method. The energy band structure at zero pressure and the pressure dependence of phonon dispersion curves are shown up to 20 GPa. The calculation finds a pressure-induced softening of the transverse acoustic phonon mode and the mode frequency reaching zero at about 14 GPa, which indicate breaking of the symmetry and formation of a new phase under high pressure. Supported by the National Natural Science Foundation of China (Grant No. 50771090), the State Key Program for Basic Research of China (Grant No. 2005CB724404) and the Program for Changjiang Scholars and Innovative Team (Grant No. IRT0650)  相似文献   

14.
In order to detect the damage locations of complex spatial structures, a sensor region-based damage detection approach was developed based on the damage locating vectors method. A normalized damage locating index was introduced to identify the damage regions. An experiment on damage detection of a substructure model of the National Swimming Center ‘Water Cube’ was carried out. Two damage patterns were involved in the experiment. The test model was excited by using hammer impacts. Acceleration responses of the undamaged and damaged structure model were measured. Modal parameters were identified from the acceleration responses by utilizing the eigensystem realization algorithm (ERA). By using the developed sensor region-based method, the damage regions of the substructure model were located. The results show that the proposed method is able to effectively locate the damage regions. Supported by Beijing Natural Science Foundation (Grant No. 8041002), the National Natural Science Foundation of China (Grant No. 8041002), the National Science and Technology Committee of China (Grant No. 2004BA904B02), and Beijing Science and Technology Committee (Grant No. Z0004028040221)  相似文献   

15.
The methods of homogenization and finite elements are employed to predict the effective elastic constants and stress-strain responses of a new type of lattice structure, the X-structure proposed by the authors in a companion paper. It is shown that in most cases the predictions by the equivalent homogenization theory agree well with the experimental and 3-dimensional finite element calculated results. The theoretical and numerical study supports the argument that the X-structure is superior to the pyramid lattice structure in terms of mechanical strength. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2006CB601202), the National Natural Science Foundation of China (Grant Nos. 10632060, 10825210), the National “111” Project of China (Grant No. B06024) and the National High-Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA03Z519)  相似文献   

16.
Stable superhydrophobic n-tetradecanoic acid (CH3(CH2)14COOH) film was prepared by means of sol-gel and self-assembly techniques, with a very high seawater contact angle (158°) and a small sliding angle (<5°). There are many microconvexities with binary structure uniformly distributed on the surface atop the film with an average diameter of about 80 nm by observation of scanning electron microscope (SEM), and the film surface structure is similar to that of lotus surface. The corrosion resistance behavior of intermetallic Fe3Al with the biomimetic superhydrophobic film surface is improved obviously when compared with pure Fe3Al sample by measurement of electrochemical impedance spectroscopy (EIS). Supported by the Excellent Mid-youthful Scientist Encouraging Foundation of Shandong Province (Grant No. 2006BS04021) and the National Natural Science Foundation of China (Grant Nos. 50672090 and 50702053)  相似文献   

17.
Nanostructured Fe40Ni40P14B6 alloy ingots of 3–5 mm in diameter could be synthesized by a metastable liquid state spinodal decomposition method. For undercooling ΔT > 260 K, the microstructure of the undercooled specimen had exhibited liquid state spinodal decomposition in the undercooled liquid state. The microstructure could be described as two intertwining networks with small grains dispersed in them. For undercooling ΔT > 290 K, the overall microstructure of the specimen changed into a granular morphology. The average grain sizes of the small and large grains are ≅ 30 nm and ≅ 80 nm, respectively. These prepared samples are soft magnets with saturation magnetization B s ≅ 0.744 T. Supported by the Hong Kong Research Grants Council the National Natural Science Foundation of China (Grant No. 50861007) and Xinjiang University Doctoral Research Start-up Grant (Grant No. BS050102)  相似文献   

18.
Boron-substituted carbon powder, B x C1−x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared B x C1−x samples can be controlled by varying the relative proportions of methane and diborane. X-ray diffraction, transmission electron microscopy, and electron energy loss spectrum confirm the successful synthesis of an amorphous BC5 compound, which consists of 10–20 nm particles with disk-like morphology. Thermogravimetry measurement shows that BC5 compound starts to oxidize approximately at 620°C and has a higher oxidation resistance than carbon. Supported by the National Natural Science Foundation of China (Grant Nos. 10474083, 50472051, 50532020, 50672081) and the National Basic Research Program of China (Grant No. 2005CB724400)  相似文献   

19.
An optimal refractive index profile of pure silica core optical fiber (PSCF) was designed, in combination with the characters of the modified chemical vapor deposition (MCVD) process. Techniques of preform fabrication by a new furnace round heating MCVD process and fiber drawing process were reviewed. Difficulties in doping fluorine in silica, widening the depressed-index cladding and maintaining the index of fiber core were discussed. Methods used to overcome these difficulties were given at the same time. Additionally, the optimal refractive index profiles of PSCF were presented. Supported by the Hi-Tech Research and Development Program of China (Grant No. 2002AA312190), National Natural Science Foundation of China (Grant No. 60477017), Program for the New Century Excellent Talents in University (Grant No. NCET-06-0076), Beijing Natural Science Foundation (Grant No. 4052023) and the Beijing Jiaotong University Foundation (Grant No. 2006XM003)  相似文献   

20.
An in-situ polymerization method was employed to synthesize the nanosilica/acrylic/epoxy (SAE) hybrid coating on AISI 430 stainless steel (430SS), as compared with a traditional blending method. Microstructures of the blending SAE hybrid coating (BC) and in-situ SAE hybrid coating (ISC) were characterized by transmission electron microscopy (TEM). Corrosion resistance of BC and ISC on 430SS was evaluated by the neutral salt spray test and potentiodynamic polarization technique. Failure mechanism of the BC on 430SS was suggested by the microstructures and corrosion behaviors. Serious aggregation of nanosilica particles in the BC impairs its structural uniformity and induces the flaws formation. These flaws in the BC initiates the failures of pitting, filiform corrosion and peeling which are accelerated by the O2 concentration cell and H+ self-catalysis in chlorine-containing moist environments. The ISC-coated 430SS shows a more advantageous corrosion resistance than that of the BC-coated. The ISC-coated 430SS can suffer the salt spray over 1000 h. Besides, it exhibits a high corrosion potential beyond 0.925 V and good passivation characteristics during the potentiodynamic polarization. Supported by the National Basic Research Program of China (“973” Program) (Grant No. 2004CB619305) and the National Natural Science Foundation of China (Grant No. 50571044)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号