首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
介绍陆川县城区防洪排涝及水环境治理方案。陆川县城区位于九洲江河畔,城区内有9条支流,拦河坝和跨河桥梁众多,由于城区上下游河床浅窄,城区建筑密集,造成洪涝灾害严重。此外,由于九洲江是陆川县和广东省湛江市及雷州半岛人民生活和生产的主要水源,保护水质至关重要,所以在防洪排涝建设同时对水环境进行治理。  相似文献   

2.
Many studies have investigated the ecological changes that occur below dams that release cold, hypolimnetic water, but very few studies have looked at the effects of the release of warm, surface waters. The effect of small, surface release dams on downstream thermal regimes is a major habitat concern for many cold‐water systems, however. The objective of this study was to examine the effects of summer temperature increases due to impoundment on downstream fish and macroinvertebrate communities in cold‐water streams. We sampled fish, macroinvertebrates and habitat upstream and downstream of dams on ten rivers during the summers of 1998 and 1999. Changes in mean summer temperature downstream varied from a cooling of 1 °C to an increase of more than 5 °C. Increasing temperatures downstream coincided with lower densities of several cold‐water fish species, specifically brown trout (Salmo trutta), brook trout (Salvelinus fontinalis) and slimy sculpin (Cottus cognatus) while overall fish species richness increased downstream. Density of mottled sculpin (Cottus bairdi), another cold‐water species, was not related to temperature changes below the dams. Macroinvertebrates showed shifts in community composition below dams that increased temperature. This study provides information useful for determining the extent of impact of these small, surface release dams, which are abundant across the country. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Knowledge of the fisheries status of dams within Uasin Gishu County was needed prior to the government's plan to introduce fish and fisheries in the area. The dams were constructed in the 1950s and stocked with tilapia for local consumption, recreation and control of macrophytes. The Nile tilapia (Oreochromis niloticus) was selected for the present study due to its establishment success and popularity in the Kenyan market. Water samples were collected at subsurface levels for phytoplankton analysis and compared with the phytoplankton found in the stomachs of O. niloticus, revealing the food preference of the fish in a natural environment. Fish samples were collected with gillnets and beach seines. The results of the present study identified the most important food items for the fish were Chlorophyceae (green algae), Bacillariophyceae (diatoms) and Cyanophyceae (blue‐green algae). The fish exhibited a relative condition factor of about 1.00, indicating their robustness or well‐being in the dams. The LM50was reached at 18–20 cm class interval, which coincides with the most critical breeding biomass needing some kind of protection for sustainable management of the fishery.  相似文献   

4.
Land‐use changes in the upper reaches of the Mara River Basin have modified their biophysical and hydrological processes, resulting in water quality degradation in streams. This study was conducted to investigate the effects of human activities on water quality and macroinvertebrates along the Nyangores River, one of the main tributaries of the Mara River, Kenya. Seven sampling sites were chosen to correspond to the loss of riparian cover, livestock watering and human activities (e.g. laundry washing, bathing, cultivation, wastewater inputs, dumping of solid wastes from urban areas and settlements along the river). Physical–chemical variables and water samples for nutrient analyses were collected monthly from February to July 2012. Benthic macroinvertebrates also were collected at the same sites as for the water quality samples. Two‐way analysis of variance tested the significant differences for each variable among the sites. Similarity percentages (SIMPER) analysis was used to identify the key taxa contributing to differences between minimally disturbed and most disturbed conditions in the study area. The results indicated increased nutrient concentrations in agricultural and settlement areas. Significant (P < 0.05) spatial–temporal variations in water quality variables were observed. A total of 42 macroinvertebrate genera were encountered, with Ephemeroptera, Plecoptera and Trichoptera orders dominating the minimally disturbed areas, and Diptera dominating the disturbed areas receiving point and no‐point solid and liquid wastes, including nutrients, from urban areas and settlements. Canonical correspondence analysis (CCA) revealed significant relationships between macroinvertebrate communities and measured physicochemical variables. The results of this study indicate the need for protection of riparian zones and treatment of sewerage wastes before their release into waterways. The dumping of solid wastes near streams and rivers also is discouraged, to maintain the quality of surface waters and aquatic organisms.  相似文献   

5.
Water supply systems are critical infrastructure that provides food and energy security for developed societies. The operation of reservoirs (flow regulation) and water intakes (water diversion) has known negative impacts on aquatic ecosystems; however, quantification of ecological impacts and examination of these two types of flow alteration remain a developing area of research. We investigated the individual and combined impact of flow regulation and water diversion on stream ecosystem integrity, the freshwater macroinvertebrate community, and the population structure of flow‐sensitive insects. For 2 years, we monitored quarterly discharge, physical and chemical stream conditions, and benthic invertebrates of four high‐altitude tropical streams that are part of the water supply system of Quito, Ecuador. Flow regulation caused a loss of the hydrological seasonality of these streams, including a decrease in stream depth and biotic quality. Water diversion caused a decrease in dissolved oxygen and overall ecosystem integrity. Freshwater invertebrate density and richness decreased as a result of water diversion and flow regulation. The combined flow alteration in these streams decreased the density of nymphal stages of the widely distributed mayfly Andesiops peruvianus. Given the societal needs for food and energy security, water management for diversion (e.g., irrigation) and in‐line storage practices (e.g., hydroelectric dams) are anticipated to increase. This research suggests that the negative environmental impacts of flow alteration could be mitigated with discharge releases designed to approximate the natural hydrologic regime of undisturbed streams.  相似文献   

6.
The effects of flow regulation on macroinvertebrates and periphytic diatoms were examined in the Hawkesbury–Nepean River system in Australia. Regulated sites below eight dams or weirs were compared with unregulated sites above the impoundments and sites on two nearby unregulated streams. The management of the water supply during the study created two types of flow regulation, sites with water supply releases and sites with comparatively small or no releases. The macroinvertebrate communities in three habitats and periphytic diatoms below the storages and weirs differed from the biota at unregulated sites above the weirs and on unregulated systems. The number of macroinvertebrate taxa in riffle and pool‐rock assemblages was significantly lower at regulated sites when compared with unregulated sites and the number of stream edge macroinvertebrate and diatom taxa was unaffected by regulation. Riffle and pool‐rock macroinvertebrate assemblages differed between the two types of regulation. However, periphytic diatom and edge habitat macroinvertebrate assemblages did not differ between the two types of flow regulation. Examination of environmental variables associated with the change in the biota suggested that the principal effect of the management of the water supply system in the Hawkesbury–Nepean River was changed hydrology rather than altered water quality. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
We tracked 335 northern squawfish implanted with radio transmitters in the Columbia River in May–December 1993 and May–September 1994. Most fish were released near The Dalles and John Day dams, with the remaining fish released into reservoir areas away from dams. We used boats with mounted Yagi antennas, fixed site receiver stations near the dams and aerial surveys to track movements of tagged northern squawfish. Northern squawfish were commonly associated with water <5 m deep, water velocities <1 m/s and were <45 m from shore. The average movement from the release site was 19.5 km; fish released near dams remained closer to their release sites than fish released into reservoirs. Short-term movements (successive observations within 24 h) comprised 75% of all detected movements, represented fish moving short distances (mean=0.96 km) between dams and down-river areas and corresponded to increased passage of juvenile salmonids. Long-term movements (successive observations exceeding 24 h) were mainly attributed to fish released into the reservoirs moving up-river to a dam, and fish moving between the two dam tailrace areas. A strong up-river movement trend terminating at John Day Dam tailrace in June suggested that spawning occurred nearby. Reduced numbers of observations of fish in the autumn suggested that northern squawfish moved away from dam areas and into deeper water for the winter. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
The possibility of utilizing biomanipulation to improve the water quality of Tallinn's drinking water reservoir (Lake Ülemiste) was analysed on the basis of water quality data, test fishing by different methods, and earlier studies on aquatic plants, light climate and sediments. Eutrophic, polymictic Lake Ülemiste is characterized by a prevalence of high filamentous cyanobacteria biomass, rotifers in the zooplankton community, mature bream in the fish biomass, and a high density of planktivores (YOY perch). Several prerequisites for being a potential target for biomanipulation were identified, including (i) decreased external total phosphorus (TP) loading; and (ii) a sufficient stock of piscivorous fish in the lake. Prohibition of fishing should favour biomanipulation efforts. The potential for recolonization of macrophytes and large Daphnia species in Lake Ülemiste could be judged from historical data. The in-lake TP concentrations are within the limits that facilitate successful restoration. As phytoplankton biomass was significantly limited by phosphorus in Lake Ülemiste, its water quality improvement will be driven primarily by reduced nutrient concentrations, and then by zooplankton grazing. Internal TP loading and a new phytoplankton species community were assessed as major challenges for successful implementation of biomanipulation as a means of improving the water quality of Lake Ülemiste.  相似文献   

9.
Peaking hydroelectric facilities release water from dams to match energy production with demand, often on a daily cycle. These fluctuating flows downstream can exert several potential stressors on organisms that may inhibit their growth, indirectly causing higher contaminant concentrations through reduced growth dilution. We collected spottail shiner (Notropis hudsonius) at two sites upstream and two sites downstream of a peaking hydroelectric dam in east‐central Saskatchewan, Canada, and compared their body condition, triglyceride concentrations, and mercury concentrations. Condition decline was observed in one of two downstream sites from August to September, and the lowest triglyceride concentrations were consistently found downstream of the dam where hydropeaking had the most perceptible effects on the shoreline. Mercury concentrations were significantly greater at both downstream sites relative to upstream. Despite these results, inconsistencies in response parameters across sites and time limited our ability to isolate the effects of hydropeaking as a causative agent and suggest indirect effects such as shifts in algal and macroinvertebrate communities may be responsible for our observations. These results suggest that hydroelectric power generation may indirectly increase mercury concentrations in downstream fish, but more research will be required to determine the specific mechanisms by which this occurs. The results and data also provide useful insights into the physiology of wild spottail shiner populations, which can help to inform the development of these fish as a North American sentinel species.  相似文献   

10.
Enhancement projects within anadromous salmonid rivers of California have increased in recent years. Much of this work is intended as mitigation in regulated streams where salmon and steelhead spawning habitat is inaccessible or degraded due to dams, water diversions and channelization. Little research has been done to assess the benefits of spawning habitat enhancement to stream organisms other than salmon. We monitored benthic macroinvertebrates at seven spawning gravel augmentation sites in the lower Mokelumne River, a regulated stream in the Central Valley of California. Placement of cleaned floodplain gravel decreased depths and increased stream velocities. Benthic organisms colonized new gravels quickly, equalling densities and biomass of unenhanced spawning sites within 4 weeks. Macroinvertebrate species richness equalled that of unenhanced sites within 4 weeks and diversity within 2 weeks. Standing crop, as indicated by densities and dry biomass, was significantly higher in enhancement sites after 12 weeks than in unenhanced sites and remained so over the following 10 weeks. Although mobile collector/browsers initially dominated new gravels, sedentary collectors were the most common feeding category after 4 weeks, similar to unenhanced sites. These data suggest that cleaned gravels from adjacent floodplain materials, used to enhance salmonid spawning sites, are quickly incorporated into the stream ecosystem, benefiting benthic macroinvertebrate densities and dry biomass. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Shirati Bay is among the important breeding and nursery sites for major fish species in Lake Victoria. Weekly samplings were conducted to assess the temporal patterns in phytoplankton, zooplankton and fish composition, abundance and biomass in relation to prevailing water quality parameters. The study also determined the influences of plankton dynamics and water quality on the fish catch composition and biomass. It was hypothesized that temporal patterns in the composition, abundance and biomass in the plankton in the bay are controlled by water quality parameters that, in turn, affect the composition and biomass of fish catches. The phytoplankton comprised mainly cyanophytes and bacillariophytes, while the zooplankton were dominated by copepods. The heavy rain season exhibited a significantly higher plankton abundance and biomass than the dry season. The plankton abundances in both seasons exhibited significant positive correlations with water temperature and transparency. The phytoplankton community was controlled by calanoid and cyclopoid species. At higher trophic levels, Lates niloticus juveniles, Oreochromis niloticus juveniles and haplochromines controlled Cladocera and Cyclopoid copepods, while Tilapia rendalli juveniles controlled the Rotifera. This study revealed that Cyanophyta and Bacillariophyta are the dominant phytoplankton, whereas cyclopoids dominate the zooplankton species in the bay. These dominant plankton groups are partly controlled by rainfall, water temperature and transparency. Fish biomass, zooplankton and phytoplankton exhibit a typical predator–prey inverse relationship. Thus, evaluation of the plankton composition, abundance and biomass should be mandatory during fisheries stock assessments to effectively manage the fishery resources in the bay.  相似文献   

12.
Since its completion in 1973 the Danjiangkou Dam has markedly changed downstream flows, water levels, temperatures, sediment loads and other water quality characteristics in downstream reaches of the Hanjiang River. There have been changes in the growth, spawning behaviour and overwintering condition of local fish populations, in the composition and abundance of food organisms and in the composition of the commercial fish catch. Despite the changed environment and the absence of a fish pass, fish populations are still able to grow and spawn under the new regime. Where conditions are like those of the Hanjiang River, dams may not necessarily have calamitous consequences for fishery production.  相似文献   

13.
In the Goulburn River, located in Victoria (Australia), dams and diversions for irrigation have modified streamflows and water temperature, and contributed to environmental degradation that includes declining native fish populations. With the passage of a new Water Act in 1989, the Victorian Government proposed to address environmental and water allocation issues through the development of tradeable water entitlements. Initially, these had a strong environmental focus and were to be allocated within an adaptive management framework that involved monitoring and evaluation to refine the total allowable diversion to sustainable levels. The actual specification of tradeable water entitlements for the Goulburn River, undertaken in 1995, differed substantially from those early proposals. Entitlements were largely based on historical use with limited and ineffective allocation of water to the environment because water temperature was not considered. A water market has been established but market failure is likely to result in an under‐allocation of water to the environment. Access to the market is restricted except to irrigation authorities and water users, and transaction costs and uncertainties in environmental requirements reinforce the status quo in water allocation which is dominated by production values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
The eutrophication of waterways has become an endemic global problem. Nutrient enrichment from agriculture activities and waste water treatment plants are major drivers, but it remains unclear how lowland sandy rivers respond to eutrophication. The objective of this study was the development and verification of eutrophication index for sandy rivers (EISR) to prioritize nutrient enrichment river stretches caused by different land use activities that include point and nonpoint sources of nutrient enrich water. The Berg River drainage system in South Africa served as a case study area for this purpose during the dry seasons (December and January) of 2015 and 2016. In the initial EISR development phase, periphyton, benthic biomass (chl‐a mg m?2), and macroinvertebrate families were employed as benthic bioindicators of river bedforms, whereas in the second phase, physicochemical and abiotic variables were used as target indicator. Using a weight of support approach, the site receiving sewage effluent was categorize as heavily polluted whereas sites impacted by agriculture land use activities were polluted. The EISR that focuses strongly on benthic bioindicators, which are close to the transfer of nutrients and energy in the food web, showed a distinct difference between river bedform impacted by sewage effluent and agriculture none point source. A maximum benthic algae biomass of 110 mg m?2 chl‐a was recorded with higher sediment orthophosphate concentration at sewage‐impacted sites. The outcome of the proposed EISR showed that it can be employed as a decision support tool for eutrophication management of sandy rivers.  相似文献   

15.
Nearly 400 rock rip‐rap grade control structures (hereafter GCS) were recently placed in streams of western Iowa, USA to reduce streambank erosion and protect bridge infrastructure and farmland. In this region, streams are characterized by channelized reaches, highly incised banks and silt and sand substrates that normally support low macroinvertebrate abundance and diversity. Therefore, GCS composed of rip‐rap provide the majority of coarse substrate habitat for benthic macroinvertebrates in these streams. We sampled 20 sites on Walnut Creek, Montgomery County, Iowa to quantify macroinvertebrate assemblage characteristics (1) on GCS rip‐rap and at sites located (2) 5–50 m upstream of GCS, (3) 5–50 m downstream of GCS and (4) at least 1 km from any GCS (five sites each). Macroinvertebrate biomass, numerical densities and diversity were greatest at sites with coarse substrates, including GCS sites and one natural riffle site and relatively low at remaining sites with soft substrates. Densities of macroinvertebrates in the orders Ephemeroptera, Trichoptera, Diptera, Coleoptera and Acariformes were abundant on GCS rip‐rap. Increases in macroinvertebrate biomass, density and diversity at GCS may improve local efficiency of breakdown of organic matter and nutrient and energy flow, and provide enhanced food resources for aquatic vertebrates. However, lack of positive macroinvertebrate responses immediately upstream and downstream of GCS suggest that positive effects might be restricted to the small areas of streambed covered by GCS. Improved understanding of GCS effects at both local and ecosystem scales is essential for stream management when these structures are present. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A habitat‐based aquatic macroinvertebrate study was initiated in the Lower Missouri River to evaluate relative quality and biological condition of dike pool habitats. Water‐quality and sediment‐quality parameters and macroinvertebrate assemblage structure were measured from depositional substrates at 18 sites. Sediment porewater was analysed for ammonia, sulphide, pH and oxidation–reduction potential. Whole sediments were analysed for particle‐size distribution, organic carbon and contaminants. Field water‐quality parameters were measured at subsurface and at the sediment–water interface. Pool area adjacent and downstream from each dike was estimated from aerial photography. Macroinvertebrate biotic condition scores were determined by integrating the following indicator response metrics: % of Ephemeroptera (mayflies), % of Oligochaeta worms, Shannon Diversity Index and total taxa richness. Regression models were developed for predicting macroinvertebrate scores based on individual water‐quality and sediment‐quality variables and a water/sediment‐quality score that integrated all variables. Macroinvertebrate scores generated significant determination coefficients with dike pool area (R2 = 0.56), oxidation–reduction potential (R2 = 0.81) and water/sediment‐quality score (R2 = 0.71). Dissolved oxygen saturation, oxidation–reduction potential and total ammonia in sediment porewater were most important in explaining variation in macroinvertebrate scores. The best two‐variable regression models included dike pool size + the water/sediment‐quality score (R2 = 0.84) and dike pool size + oxidation–reduction potential (R2 = 0.93). Results indicate that dike pool size and chemistry of sediments and overlying water can be used to evaluate dike pool quality and identify environmental conditions necessary for optimizing diversity and productivity of important aquatic macroinvertebrates. A combination of these variables could be utilized for measuring the success of habitat enhancement activities currently being implemented in this system. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

17.
The effects of flow releases (daily during spring and four times weekly during summer) from a small impoundment on macroinvertebrate assemblages in the lower Indian River and upper Hudson River of northern New York were assessed during the summers of 2005 and 2006. Community indices, feeding guilds, dominant species and Bray–Curtis similarities at three sites on the Indian River, below a regulated impoundment, were compared with those at four control sites on the Cedar River, below a run‐of‐the‐river impoundment of comparable size. The same indices at four less‐likely affected sites on the Hudson River, below the mouth of the Indian River, were compared with those at an upstream control site on the Hudson River. Results show that the function and apparent health of macroinvertebrate communities were generally unaffected by atypical flow regimes and/or altered water quality at study reaches downstream from both dams in the Indian, Cedar and Hudson Rivers. The lentic nature of releases from both impoundments, however, produced significant changes in the structure of assemblages at Indian and Cedar River sites immediately downstream from both dams, moderate effects at two Indian River sites 2.4 and 4.0 km downstream from its dam, little or no effect at three Cedar River sites 7.2–34.2 km downstream from its dam, and no effect at any Hudson River site. Bray–Curtis similarities indicate that assemblages did not differ significantly among sites within similar impact categories. The paucity of scrapers at all Indian River sites, and the predominance of filter‐feeding Simulium gouldingi and Pisidium compressum immediately below Abanakee dam, show that only minor differences in dominant species and trophic structure of macroinvertebrate communities occurred at affected sites in the Indian River compared to the Cedar River. Thus, flow releases had only a small, localized effect on macroinvertebrate communities in the Indian River. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Many reservoirs provide multiple benefits to people around the world, in addition to primary uses such as irrigation. Thus, reservoir management should address their multiple uses. The water quality of ten irrigation reservoirs in Sri Lanka was examined in the present study with the objective of better understanding the effects of hydrological regimes on reservoir water quality and trophic state. Basic limnological parameters pertinent to the nutrient loads to, and trophic state of, the reservoirs were collected from June 2013 to February 2016. The sampling period was arbitrarily divided into two periods of approximately similar duration (period 1 = June 2013–September 2014; period 2 = October 2014–February 2016) to investigate whether or not there was a seasonal variation in the water quality parameters. Although temporal and spatial variations were observed, most water quality parameters were within the levels acceptable for drinking water standards. The 10 reservoirs were also ordinated by principal component analysis (PCA) on the basis of the water quality parameters of the two sampling periods in a two‐dimensional score plot. Reservoirs in the first principal component (PC1) axis were represented by negative scores attributable to the dissolved oxygen concentration and pH and, to a lesser extent, by electrical conductivity and chlorophyll‐a concentration. Positive scores in PC1 were represented by reservoirs with a score loading attributable to alkalinity, nitrate concentration, Secchi depth, temperature and seston weight and, to a lesser extent, from the total phosphorus concentration. There was a significant negative correlation of PC1 scores with relative reservoir water‐level fluctuation (RRLF; the ratio of mean reservoir water‐level amplitude to mean reservoir depth). Furthermore, Carlson's trophic index also were influenced by RRLF, although not by hydraulic retention time (HRT), indicating allochthonous nutrient inputs into the irrigation reservoirs were mainly governed by RRLF, but not by HRT. Thus, the results of the present study provide useful insights into achieving desirable reservoir water quality through the manipulation of the hydrological regime.  相似文献   

19.
大汶河流域水生态系统健康评价研究   总被引:2,自引:0,他引:2       下载免费PDF全文
以大汶河流域为研究对象,基于2016年10月流域水生态调查数据,采用综合污染指数法、鱼类完整性指数法、层次分析法分别对水质、鱼类、河岸带进行健康评价,并在此基础上采用层次分析法对大汶河流域水生态系统进行综合评价。结果表明:大汶河流域水生态系统健康状况整体较差,较差和极差状态的点位分别占总采样点的50.0%和41.7%,健康等级为一般的采样点位仅占8.3%。从不同评价内容来看,该流域水质状况较差,其中大汶河南支、瀛汶河南段和汇河支流水质最差,为劣Ⅴ类水;在鱼类完整性评价中,24个采样点中1个采样点为健康,10个采样点为亚健康,13个采样点为一般,分别占总点位数的4.2%、42.6%和53.2%,没有较差和极差的采样点;河岸带生境状况评价结果整体较好,未出现河岸带生境较差的采样点。  相似文献   

20.
The Serial Discontinuity Concept (SDC) proposes that dams have the potential to affect the downstream ecological condition of rivers. While the SDC was developed principally around changes to physical habitat or temperature, reservoirs also have the potential to impact on downstream water quality, including algal community structure. In the current study we examined the impacts of an extreme drawdown event on nutrient loads and algal community structure downstream of a large water storage reservoir in south‐eastern Australia—Lake Hume. The lake was a net exporter of carbon, nitrogen, phosphorus and iron during the study period and was a net sink for manganese. Most of the carbon, nitrogen and phosphorus exported from the lake was in the form of algal biomass. Processes in the lake also influenced the downstream algal community structure. Upstream of the reservoir green algae were the most dominant species; within and downstream of the reservoir cyanobacteria dominated. Much of the algal biomass found at the downstream sites appeared to originate in Lake Hume and was physically transported downstream. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号