首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用水热法,以硫酸铝为铝源,尿素为沉淀剂,加入氧化石墨烯(GOs),制备出具有梯级孔结构的氧化铝空心微球复合材料(γ-Al2O3/GOs)。利用XRD、SEM、TEM、BET等方法对样品的微观结构进行了表征,同时系统地考察了反应温度及反应时间等因素对氧化铝空心微球结构和形貌的影响,并探讨了其形成机理。  相似文献   

2.
以川西微晶白云母为主要原料,铝粉为还原剂,采用铝热还原氮化法合成了α-Al2O3/β-SiAlON材料,并利用X射线衍射仪(XRD)研究了不同温度下的物相变化及配铝量对反应产物的影响.结果表明:在1350℃和1450℃,所有样品的主要产物均为α-Al2O3和β-SiAlON相,但铝粉用量为35%(质量分数,下同)的样品经1350℃铝热还原氮化后的产物中含β-SiAlON相较多;当铝粉用量和加热温度分别为45%和1550℃时,反应产物中不含α-Al2O3和β-SiAlON相,却出现了AlON、AlN和Si3Al7O3N9相.  相似文献   

3.
以硝酸铝为原料,利用十六烷基三甲基溴化胺(CTAB)为模板剂,通过水热合成技术制备了棒状氧化铝材料。通过TEM及SEM分析表明,水合氧化铝产物呈长板片形结构,长径比在1:10左右;经500℃煅烧获得的γ-Al2O3呈棒状,在棒表面有纳米孔洞存在;经1200℃煅烧获得的α-Al2O3则呈现致密的晶粒串烧在一起的棒状结构,但棒的直径不呈等径状态。  相似文献   

4.
本文以高纯硝酸铝和尿素为原料,采用低温燃烧合成方法制备纳米α-Al2O3粉体。分别采用X射线衍射、透射电镜、激光粒度分布测试仪、差热-热重和红外光谱仪对产物进行了研究。低温燃烧合成方法制备纳米α-Al2O3粉体合成的最佳反应条件为:硝酸铝和尿素的摩尔配比为1:2.5,点火温度为750℃。产物大部分为片状,部分为类球状;粒径为40nm~90nm。  相似文献   

5.
用饱和硝酸铝和硝酸镍溶液在室温下真空浸渍气孔率大约为15%的氧化铝坯体,然后干燥、煅烧,经过多次循环获得理想致密度的纳米/微米氧化铝基陶瓷复合材料.以X射线衍射(XRD)、扫描电子显微镜(SEM)和能谱仪(EDS)研究了复合材料的物相组成、元素分布、显微结构及气孔率随浸渍次数的变化.经过饱和硝酸镍溶液浸渍13次后,氧化铝坯体的气孔率由14.42%降低到8.89%,Al2O3/NiAl2O4复合材料由α-Al2O3和NiAl2O4尖晶石组成;经过饱和硝酸铝溶液浸渍8次后,氧化铝坯体的气孔率由13.33%降低到9.68%,Al2O3复合材料由α-Al2O3组成.Al、Ni和O在复合材料基体中均匀分布.  相似文献   

6.
以硝酸铝(Al(NO3)3·9H2O)和葡萄糖(C6H12O6·H2O)为原料,利用碳热还原法制备氮化铝粉末,研究了尿素对前驱物的制备及前驱物氮化反应的影响,研究发现添加尿素合成的前驱物和未添加尿素合成的前驱物在氮化反应过程中相变和反应速率存在较大差异。在没有添加尿素合成的前驱物的氮化反应过程中,出现了γ-Al2O3、α-Al2O3、AlON和AIN相,该前驱物的反应速率慢,完全氮化需要在1600℃下才能完成。对于添加尿素合成的前驱物而言,在其氮化反应过程中仅出现了γ-Al2O3和AIN相,没有α-Al2O3和AlON的生成,AIN直接由γ-Al2O3氮化生成,该前驱物的氮化反应速率快,氮化反应温度低,在1400℃下即可实现完全氮化。分析讨论了两种前驱物的氮化反应速率不同的主要原因,并利用XRD、SEM等分析方法对粉末进行了表征。  相似文献   

7.
以无水氯化铝和异丙醚为原料,采用非水解溶胶-凝胶法制备出氧化铝凝胶。其经800℃煅烧才析出少量γ-Al2O3晶体,γ-Al2O3向α-Al2O3晶型转变在1200℃附近,经900℃煅烧后比表面积仍高达145m2/g,具有介孔结构。以该高活性氧化铝凝胶作为铝源,采用碳热还原氮化工艺合成氮化铝粉体。结果表明,氧化铝凝胶经300℃预煅烧,按n(C)/n(Al)=7.8与碳黑混合,在流量80mL/min高纯N2中,于1450℃还原氮化2h便可合成出平均粒径在400nm的高纯六方相AlN粉体。  相似文献   

8.
以Al(NO3)3·9H2O、尿素为原料,以PEG2000为表面活性剂,采用水热-热解法合成纤维状氧化铝粉体。用XRD、SEM对产物进行表征,研究了不同水热时间、pH值、硝酸铝浓度、PEG2000添加量及铝源等因素对纤维状α-Al2O3粉体结晶状况、晶粒尺寸、晶体形貌的影响,分析了合成反应机理。实验结果表明:PEG2000添加量是影响反应体系得到纤维形貌产物的关键。  相似文献   

9.
为了使铝工业废水达标排放,回收废水中的铝,以NaOH为沉淀剂,通过控制不同pH值,采用化学分步沉淀法对铝工业废水进行处理,同时对所产生的沉淀物Al(OH)3经过干燥、焙烧进行资源化研究,采用粒径测定仪和红外光谱对所得产物进行了分析检测.研究表明:废水处理后得到的Al(OH)3凝胶在干燥15~25 h、焙烧温度1150℃、焙烧7 h的条件下,可得氧化铝粉末,该粉末产品经粒径检测、红外谱图分析,证明所得氧化铝为α-Al2O3,且粒径在227~309 nm范围内.铝工业废水经过分步沉淀处理后,达到国家废水排放标准,废水中的铝以α-Al2O3的形式回收.  相似文献   

10.
高纯氧化铝制备新方法及其应用研究   总被引:3,自引:0,他引:3  
采用高纯金属铝水解成的氢氧化铝为原料 ,研究了不同温度下其相变过程、比表面变化以及结构变化 ,探讨了α-Al2 O3 相变过程中细化晶粒的方法及制备透明氧化铝的可行性。实验结果表明 ,采用快速升温的方法在130 0℃可以得到一次颗粒为 0 2 7μm的α -Al2 O3,球磨后的平均粒度为 0 5 μm在 182 0℃氢气气氛下烧结陶瓷的透明率达 92 % ,经过进一步提高可以用于制备透明氧化铝灯管  相似文献   

11.
在碳酸铝铵法制备氧化铝工艺的基础上,通过加入晶体生长促进剂及改变热分解工艺等方法,有效控制了α-Al2O3颗粒的大小和形貌。结果表明:促进剂对α-Al2O3的相变过程影响很大,加入促进剂后使其相转变温度降低了200℃,至1000℃时已完全转变为α-Al2O3相;升温方式对α-A2lO3颗粒的形貌影响很大,将含促进剂的样品直接入高温炉煅烧时,倾向于形成六角片状颗粒;而先低温后高温煅烧时则会形成圆饼状颗粒。通过控制升温过程,可以控制得到粒径较小的圆饼状α-Al2O3颗粒,且分散性良好。  相似文献   

12.
文钰斌  刘新红  顾强  陈晓雨  贾全利  杨林  马腾 《材料导报》2017,31(18):109-113, 118
以硝酸铝、硝酸锌和柠檬酸为原料,以炭黑和酚醛树脂为碳源,采用溶胶-凝胶法制备了纳米锌铝尖晶石粉体,研究了高温还原气氛下不同碳源对纳米锌铝尖晶石合成及颗粒粒径的影响,并以高温氧化气氛热处理、无碳引入的试样作对比。研究表明:在还原气氛下,引入碳源的试样在600℃热处理后,锌铝尖晶石峰不明显,主要是因为碳起空间位阻作用,阻碍了离子传质;800℃热处理后可合成锌铝尖晶石,且纳米颗粒尺寸较小(20~30nm);热处理温度升高至1 000℃时,纳米锌铝尖晶石颗粒尺寸变化不大,碳的空间位阻作用抑制了颗粒长大和烧结。与炭黑相比,酚醛树脂抑制锌铝尖晶石颗粒长大的效果更好,可能因为树脂碳化后呈玻璃态,空间阻隔作用更强。但热处理温度不低于1 200℃时,纳米锌铝尖晶石易被CO或C还原,锌以Zn(g)的形式逸出,只有α-Al2O3相。然而,在空气气氛下,600℃热处理后即可合成纳米锌铝尖晶石,但热处理温度从600℃升至800℃时,锌铝尖晶石颗粒长大较明显,颗粒尺寸从27.5nm增至54.6nm,并呈烧结状。  相似文献   

13.
用烧结法生产喷涂氧化铝。实验采用水冷非转移式等离子喷枪 ,工作气体为N2 、H2 ,其纯度 99.9%。稳定相α-Al2 O3经等离子射流熔融、淬冷后 ,转变为亚稳相γ -Al2 O3及球化低钠氧化铝 ,经试验确定 ,Al2 O3的相变历程如下 :α -Al2 O3等离子射流 熔体 淬冷 γ -Al2 O380 0℃ ε -Al2 O3110 0℃ α -Al2 O3  相似文献   

14.
张波  王晶 《功能材料》2006,37(7):1138-1141
采用异丙醇铝为铝源,3.5代PAMAM为模板剂,通过油滴球过程合成了介孔γ-Al2O3微球.研究发现在所合成的氧化铝中,介孔相呈海绵状或蠕虫状随机分布的三维网络结构;其孔径主要分布在2~6nm之间,且合成的介孔氧化铝的比表面积可达340m2/g以上.  相似文献   

15.
氧化铝空心微球的制备   总被引:4,自引:0,他引:4  
采用微米级铝粉,以自模板法制备了微米级氧化铝空心微球,研究了不同沉淀剂、不同铝离子浓度和煅烧温度对制备空心球的影响。用扫描电镜和X射线衍射表征了制备的样品。结果表明:用尿素作沉淀剂、铝离子浓度在0.4mol/L、煅烧温度为1000℃时,更容易得到表面形貌好的氧化铝空心微球。空心球的粒径与微米级铝粉粒径一直,表面光滑,球壳厚度在1μm左右。  相似文献   

16.
以硝酸铟作为铟源,用硫代乙酰胺或者2-甲基硫代丙酰胺为硫源,在低温开放系统中采用微波辅助加热制备得到硫化铟(In_2S_3)微球。分别采用包括表面光电压谱(SPV)及紫外-可见漫反射(DRS)在内的诸多方法对产物进行表征,并探究了不同硫源及pH值对In_2S_3的结构、尺寸及光学性质的影响。以硫代乙酰胺作为硫源时,微波温度90℃下,制备得到实心In_2S_3微球;以2-甲基硫代丙酰胺为硫源时,微波温度85℃下,制备得到空心In_2S_3微球。空心In_2S_3微球的表面光电压高于实心,说明空心In_2S_3微球的光激发电荷分离效率优于实心。  相似文献   

17.
在MgO系铸钛包埋料中加入α-Al2O3细粉,经1100℃热处理后,MgO和α-Al2O3可原位生成镁铝尖晶石,导致试样体积膨胀,显气孔率明显增加,耐压强度明显降低.当加入的α-Al2O3细粉为10%、20%(质量分数)时,α-Al2O3细粉几乎全部与MgO反应生成镁铝尖晶石,试样体积膨胀最明显,热膨胀率最大,可以很好地弥补钛铸件的冷却收缩.  相似文献   

18.
碳酸铝铵热分解制备α-Al2O3超细粉   总被引:33,自引:0,他引:33  
研究了以硫酸铝铵和碳酸氢铵为原料合成碳酸铝铵的工艺条件.在实验条件范围内,将硫酸铝铵溶液以低于1.2L.h-1的速度加入到碳酸氢铵溶液中,可合成碳酸铝铵;在其它操作条件下,获得的产物为γ-AlOOHγ-AlOOH升温过程中的物相变化次序为:γ-AlOOH→γ-Al2O3→δ-Al2O3→θ-Al2O3→α-Al2O3;而碳酸铝铵的相变次序为:碳酸铝铵→无定型Al2O3→θ-Al2O3→α-Al2O3碳酸铝铵转变为θ-Al2O3和α-Al2O3的温度均比γ-AlOOH低约100℃γ-AlOOH在1200℃煅烧1h方可完全转变为α-Al2O3,其颗粒尺寸为150um;粉体经1450℃、2h烧结相对密度为84.46%;而碳酸铝铵在1100℃煅烧1h就可完全转变为α-Al2O3,其颗粒尺寸为70um,粉体在相同的烧结条件下相对密度可达97.80%  相似文献   

19.
微波酸消解α-Al2O3研究   总被引:1,自引:0,他引:1  
使用MARS-5微波高压消解系统采用HCl或HNO3成功地溶解了α-Al2O3样品,指出当溶剂温度上升至240℃时,HCl或HNO3对α-Al2O3样品具有较强的溶解能力。当溶剂量固定时,样品量的大小与溶样时间大致成正比关系。Al2O3样品中α相比率越高,消解时间越长。  相似文献   

20.
纳米α-Al2O3的爆轰合成实验及烧结特性研究   总被引:1,自引:0,他引:1  
采用水胶炸药爆轰的方法制备了纳米α-Al2O3.定性地研究了在不同烧结温度下纳米α-Al2O3的烧结特性.发现在烧结的过程中纳米α-Al2O3在300~900℃的温度区间内晶粒度是逐渐长大的,长大的幅度不大.但从900℃开始到1000℃该纳米α-Al2O3的晶粒度是又突然细化,蚁富姆群艽?过了1000℃后晶粒度又开始长大,长大的幅度比第一次长大的幅度大很多.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号