首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
目的利用雪莲注射液中间体为原料,制备雪莲纳米粒,以提高患者对雪莲用药的顺应性和达到缓释作用。方法以复乳法制备雪莲纳米粒,雪莲原料药溶解于乙二醇中作为内水相,聚乳酸聚乙醇酸共聚物(plga)溶解在二氯甲烷-丙酮(2∶1)的混和溶剂中作为油相,加入乳化剂形成w/o型初乳后以蒸馏水作为外水相在乳化剂作用下形成w/o/w型复乳纳米溶液。结果纳米粒的平均粒径在134nm,Zeta电位为-8.06-包封率为42.83%,载药量为2.17‰12h体外释放39.57%。结论复乳法能够得到性质稳定和具有缓释功能的雪莲纳米粒。  相似文献   

2.
以生物可降解材料聚乳酸-羟基乙酸(PLGA)为载体制备了载紫杉醇纳米粒,重点考察了纳米粒的体外释放特性.采用乳化-溶剂挥发法制备了载紫杉醇PLGA纳米粒,其平均粒径为200nm,载药量为21%,包封率为89.44%;体外释药符合Higuchi方程:Q=3.8796t1/2+30.4649(r=0.9397),同时载紫杉醇纳米粒具有一定的缓释作用.  相似文献   

3.
采用阴离子配位聚合方法,合成了二氧化碳(CO2),环氧丙烷(PO)与马来酸酐(MA)的三元共聚物,聚碳酸亚丙酯马来酸酯 (PPCMA).采用复相乳液(W/O/W)溶剂挥发法制备了包裹水溶性模型药物葡萄糖(glucose)的可降解微球,并研究了壁材与囊心的比例、稳定剂明胶浓度、搅拌速率等因素对微球性能的影响.当v(PPCMA)∶v(glucose)=1∶2,gelatin质量分数为0.2%,第1次乳化搅拌速率为400r/min,第2次乳化搅拌速率为500r/min时,得到粒径较小、载药量和包封率分别为26.1%和76.1%的载药微球.  相似文献   

4.
采用水-油-水双乳化溶剂挥发法制备了聚乳酸-羟基乙酸共聚物(PLGA)/氧氟沙星载药微球,并考察了介孔硅、透明质酸、多聚赖氨酸不同内水相成分对微球粒径及其分布、表面形态、包封率以及释放特性的影响。研究结果表明,采用该方法制备出了内部具有多孔结构的载药微球;透明质酸内水相组微球平均粒度最大,粒径分布最小;介孔硅和透明质酸的加入提高了微球包封率;3种内水相组的初期爆释均高于对照组;多聚赖氨酸内水相组释放速率最快,透明质酸内水相组释放速率最慢。释放拟合曲线表明,4组不同内水相的微球,在释放区间内,释放行为都符合Slogistic方程式。  相似文献   

5.
采用o/w型乳化-溶剂挥发法来制备载药微球,以二氯甲烷为溶剂相,以聚乳酸为载体材料,以维A酸为包埋药物,以吐温-80和明胶为乳化剂。探索载药微球制备过程中的变量(高剪切转速、高剪切时间、内外相体积比、壁材用量等)对载药微球粒径大小、包封率以及稳定性等的影响。得出最优载药微球制备方案:明胶浓度7.5mg/mL,吐温浓度6mg/mL,聚乳酸浓度10 mg/mL,内外相体积比1∶10,剪切时间30min,搅拌速度300r/min,挥发时间3h。所制得的聚乳酸载药微球形态光滑且分散性较好,包封率为52.42%。  相似文献   

6.
载异烟肼聚己内酯微球的制备及其性质研究   总被引:1,自引:0,他引:1  
采用O/O溶剂挥发法制备载异烟肼聚己内酯微球。系统考察了活性剂浓度、内外油相体积、投药量对微球粒径、载药量和包封率的影响。结合内外油相初始粘度分析载药微球成球性,用IR、XRD、SEM对微球化学结构、结晶状态和表面形貌进行表征。通过优化得到平均粒径为28.73μm、载药量为2.36%、包封率为49.58%、外观圆整、表面多孔的载药微球。与O/W溶剂挥发法制备微球对比表明,O/O法有效地提高了载异烟肼聚己内酯微球载药量与包封率,是包覆亲水性小分子药物的可行方法,该载药微球可望用于骨和关节结核病的缓释治疗。  相似文献   

7.
研究了乳化溶剂挥发法制备ABZ-PPENK微球的方法。利用扫描电镜、透射电镜、红外光谱表征了ABZ-PPENK微球的形态及结构,利用光学显微镜计算了微球的粒径分布,并筛分出不同粒径段的ABZ-PPENK微球,计算了微球的载药量与包封率。制备的ABZ-PPENK微球,表面光滑、球形圆整,制得的微球平均粒径为9.9μm,微球粒径接近正态分布,ABZ药物完全被包裹在PPENK微球之中,且载药量与包封率均较高。  相似文献   

8.
首次以利福喷丁为模型药物、聚己内酯为载体材料,制备了用于长效抑制骨结核生长的利福喷丁聚己内酯缓释微球,观察其理化特性和体外释放性能。采用O/W乳化溶剂挥发法制备载利福喷丁聚己内酯微球,系统考察了投药量、聚乙烯醇的浓度、乳化速度对微球形貌、粒径、载药量和包封率的影响。通过对制备工艺的优化,得到最佳制备条件是乳化速度300r·min-1,投药量20mg,聚乙烯醇的浓度2%。所制备的载利福喷丁聚己内酯微球圆整,表面有微孔,大小分布均匀,粒径分布较窄,平均粒径为(27.249±0.256)μm、载药量(3.098±0.011)%、包封率(34.078±0.123)%。实验结果表明:聚己内酯是负载利福喷丁的一种理想控释材料。  相似文献   

9.
克拉霉素漂浮-生物粘附微囊的制备及漂浮性能研究   总被引:3,自引:0,他引:3  
以克拉霉素为模型药物,采用乳化-溶剂挥发法制备乙基纤维素载药微球(EM),并通过内部凝胶化法进行包衣制得海藻酸钠-乙基纤维素载药微囊(AEM),最后通过离子交联法进一步包衣制得壳聚糖-海藻酸钠-乙基纤维素微囊(CAEM).考察了制备条件对微囊中药物包封率及载药量的影响,并进一步评价了微囊的体外释放及漂浮性能.结果表明,EM及CAEM球形度均较好,药物包封率分别为80.9%~97.3%及72.3%~78.2%;载药量分别为16.2%~49.8%及7.1%~12.7%.CAEM在pH为5的醋酸缓冲液中,6h的累积释放率为56.6%~76.9%,漂浮率>70%,具有较好的缓释效果及良好的体外漂浮性能.CAEM有望延长药物在胃内的滞留时间,提高胃粘膜药物浓度,从而提高幽门螺旋杆菌的根除率.  相似文献   

10.
目的:优化BSA-PLGA微球制备工艺,并对其包封率、形态、体外释放药物及微球包裹前后BSA的稳定性进行评价。方法:以PLGA为载体,采用复乳溶剂挥发法制备BSA-PLGA微球。Micro BCA法测定微球的包封率和载药量,扫描电子显微镜观察微球的形态,激光粒度仪测定粒度及分布,聚丙烯酰胺凝胶电泳(SDS-PAGE)研究微球包裹前后BSA分子结构的完整性,同时考察体外释药性能。结果:根据优化工艺制备的微球外观圆整,平均粒径(2275.8±256.9)nm,包封率(82.59±2.92)%,载药量(13.76±0.49)×10-2%,包裹前后BSA结构稳定,体外释放28天以上,释放曲线符合Higuchi方程。结论:本研究获得了较优化的BSA-PLGA微球制备工艺,所制备的微球具有较高的包封率和明显的缓释效果。  相似文献   

11.
Porous scaffolds that can prolong the release of bioactive factors are urgently required in bone tissue engineering. In this study, PLGA/gelatin composite microspheres (PGMs) were carefully designed and prepared by entrapping poly(l-lactide-co-glycolide) (PLGA) microspheres (PMs) in gelatin matrix. By mixing PGMs with PLGA solution directly, drug-loaded PLGA/carbonated hydroxyapatite (HAp)/PGMs composite scaffolds were successfully fabricated. In vitro release of fluorescein isothiocyanate-dextran (FD70S) as a model drug from the scaffolds as well as PMs and PGMs was studied by immersing samples in phosphate buffered saline (pH = 7.4) at 37°C for 32 days. Compared with PMs, PGMs and PLGA/HAp/PGMs scaffolds exhibited slow and steady release behavior with constant release rate and insignificantly original burst release. The swelling of PGMs, diffusion of drugs, and degradation of polymer dominated the release behaviors synergistically. The PLGA/HAp/PGMs scaffold offers a novel option for sequential or simultaneous release of several drugs in terms of bone regeneration.  相似文献   

12.
The primary objective of this project was to develop a biodegradable, orally active controlled-release formulation of amifostine. Development of such a formulation will mark an important advancement in the areas of chemoprotection and radioprotection. Biodegradable microcapsules of amifostine were prepared using poly(lactide/glycolide) (PLGA 50:50). The microcapsules were prepared by solvent evaporation technique. Amifostine-loaded microcapsules were evaluated for particle size, surface morphology, thermal characteristics, and drug release. Particle size and surface morphology were determined using scanning electron microscopy (SEM). Thermal characterization was conducted using differential scanning calorimetry (DSC). In vitro release study was performed at 37°C using phosphate buffer (pH 7.4). Amifostine release was calculated by measuring the amount of drug remaining within the microcapsules at a specific sampling time. The amount of amifostine in the samples was determined by high-performance liquid chromatography (HPLC) using an electrochemical detector. The yield of microcapsules was 75%. Scanning electron microscopy pictures revealed that the particles were nearly spherical and smooth with an average size of 54 µm. Differential scanning calorimetry thermograms showed that microcapsules loaded with amifostine have a glass transition at 39.4°C, and the melting endotherm of amifostine was absent. The absence of a melting endotherm for amifostine was an indication that amifostine was not in the crystalline state in the microcapsules, but rather in the form of a solid solution in PLGA. Approximately 50% amifostine was released during the first 6 hr of the in vitro release study. The drug, however, continued to release over the observed period of 12 hr during which 92% amifostine was released.  相似文献   

13.
Microcapsules of vitamin A palmitate were prepared by gelatin-acacia complex coacervation. The effects of colloid mixing ratio, core-to-wall ratio, hardening agent, concentration of core solution, and drying method on the coacervation process and the properties of the microcapsules were investigated. The microcapsules of vitamin A palmitate were prepared using different weight ratios of gelatin and acacia, that is, 2:3, 1:1, and 3:2 under controlled conditions. The other factors studied were 1:1, 1:2, and 1:3 core-to-wall ratios; 30, 60, and 120 min of hardening time; 2, 5, and 10 ml of formaldehyde per 280 g of coacervation system as a hardening agent; and 30%, 40%, and 50% w/w vitamin A palmitate in corn oil as a core material. The drying methods used were air drying, hot air at 40°C, and freeze-drying. The results showed that spherical microcapsules were obtained for all conditions except for 30 min of hardening time, which did not result in microcapsules. The optimum conditions for free-flowing microcapsules with a high percentage of entrapped drug were 1:1 gelatin-to-acacia ratio and 1:2 core-to-wall ratio when hardening with 2 ml formaldehyde for 60 min and using 40% w/w vitamin A palmitate in corn oil as the core concentration. In addition, drying the microcapsules by freeze-drying provided microcapsules with excellent appearance.  相似文献   

14.
Microcapsules of vitamin A palmitate were prepared by gelatin-acacia complex coacervation. The effects of colloid mixing ratio, core-to-wall ratio, hardening agent, concentration of core solution, and drying method on the coacervation process and the properties of the microcapsules were investigated. The microcapsules of vitamin A palmitate were prepared using different weight ratios of gelatin and acacia, that is, 2:3, 1:1, and 3:2 under controlled conditions. The other factors studied were 1:1, 1:2, and 1:3 core-to-wall ratios; 30, 60, and 120 min of hardening time; 2, 5, and 10 ml of formaldehyde per 280 g of coacervation system as a hardening agent; and 30%, 40%, and 50% w/w vitamin A palmitate in corn oil as a core material. The drying methods used were air drying, hot air at 40°C, and freeze-drying. The results showed that spherical microcapsules were obtained for all conditions except for 30 min of hardening time, which did not result in microcapsules. The optimum conditions for free-flowing microcapsules with a high percentage of entrapped drug were 1:1 gelatin-to-acacia ratio and 1:2 core-to-wall ratio when hardening with 2 ml formaldehyde for 60 min and using 40% w/w vitamin A palmitate in corn oil as the core concentration. In addition, drying the microcapsules by freeze-drying provided microcapsules with excellent appearance.  相似文献   

15.
There is a need to control the spatio-temporal release kinetics of growth factors in order to mitigate current usage of high doses. A novel delivery system, capable of providing both structural support and controlled release kinetics, has been developed from PLGA microparticles. The inclusion of a hydrophilic PLGA–PEG–PLGA triblock copolymer altered release kinetics such that they were decoupled from polymer degradation. A quasi zero order release profile over four weeks was produced using 10% w/w PLGA–PEG–PLGA with 50:50 PLGA whereas complete and sustained release was achieved over ten days using 30% w/w PLGA–PEG–PLGA with 85:15 PLGA and over four days using 30% w/w PLGA–PEG–PLGA with 50:50 PLGA. These three formulations are promising candidates for delivery of growth factors such as BMP-2, PDGF and VEGF. Release profiles were also modified by mixing microparticles of two different formulations providing another route, not previously reported, for controlling release kinetics. This system provides customisable, localised and controlled delivery with adjustable release profiles, which will improve the efficacy and safety of recombinant growth factor delivery.  相似文献   

16.
Aim: This study aims to investigate the suitability of thermosensitive triblock polymer poly-(dl-lactic acid-co-glycolic acid) (PLGA)–polyethylene glycol (PEG)–PLGA as a matrix material for ocular delivery of dexamethasone acetate (DXA). Methods: The copolymer was synthesized and evaluated for its thermosensitive and gelation properties. DXA in situ gel-forming solution based on PLGA–PEG–PLGA copolymer of 20% (w/w) was prepared and evaluated for ocular pharmacokinetics in rabbit according to the microdialysis method, which was compared to the normal eye drop. Result: The copolymer with 20% (w/w) had a low critical solution temperature of 32°C, which is close to the surface temperature of the eye. The Cmax of DXA in the anterior chamber for the PLGA–PEG–PLGA solution was 125.2 μg/mL, which is sevenfold higher than that of the eye drop, along with greater area under the concentration–time curves (AUC). Conclusion: These results suggest that the PLGA–PEG–PLGA copolymer is potential thermosensitive in situ gel-forming material for ocular drug delivery, and it may improve the bioavailability, efficacy of some eye drugs.  相似文献   

17.
The objective of this investigation was to design and develop water-in-oil-in-water type multiple emulsions (w/o/w emulsions) entrapping acyclovir for improving its oral bioavailability. Multiple emulsions (MEs) were prepared and optimized using Span-80 and Span-83 as lipophilic surfactant and Brij-35 as hydrophilic surfactant. The physio-chemical properties of the w/o/w emulsions - particle size, viscosity, phase separation (centrifugation test) and entrapment efficiency were measured and evaluated along with macroscopic and microscopic observations to confirm multiple nature, homogeneity and globule size. Stability study, in vitro and ex vivo release studies were performed followed by in vivo studies in rats. Stable w/o/w emulsions with a particle size of 33.098 ± 2.985 µm and 85.25 ± 4.865% entrapment efficiency were obtained. Stability studies showed that the concentration of lipophilic surfactant was very important for stability of MEs. Drug release from the prepared formulations showed initial rapid release followed by a much slower release. In vivo studies in rats indicated prolonged release and better oral bioavailability as compared to drug solution. The overall results of this study show the potential of the w/o/w emulsions as promising drug delivery systems for acyclovir.  相似文献   

18.
Objective: To develop an oral sustained release formulation of mycophenolate mofetil (MMF) for once-daily dosing, using chitosan-coated polylactic acid (PLA) or poly(lactic-co-glycolic) acid (PLGA) nanoparticles. The role of polymer molecular weight (MW) and drug to polymer ratio in encapsulation efficiency (EE) and release from the nanoparticles was explored in vitro.

Methods: Nanoparticles were prepared by a single emulsion solvent evaporation method where MMF was encapsulated with PLGA or PLA at various polymer MW and drug: polymer ratios. Subsequently, chitosan was added to create coated cationic particles, also at several chitosan MW grades and drug: polymer ratios. All the formulations were evaluated for mean diameter and polydispersity, EE as well as in vitro drug release. Differential scanning calorimetry (DSC), surface morphology, and in vitro mucin binding of the nanoparticles were performed for further characterization.

Results: Two lead formulations comprise MMF: high MW, PLA: medium MW chitosan 1:7:7 (w/w/w), and MMF: high MW, PLGA: high MW chitosan 1:7:7 (w/w/w), which had high EE (94.34% and 75.44%, respectively) and sustained drug release over 12?h with a minimal burst phase. DSC experiments revealed an amorphous form of MMF in the nanoparticle formulations. The surface morphology of the MMF NP showed spherical nanoparticles with minimal visible porosity. The potential for mucoadhesiveness was assessed by changes in zeta potential after incubation of the nanoparticles in mucin.

Conclusion: Two chitosan-coated nanoparticles formulations of MMF had high EE and a desirable sustained drug release profile in the effort to design a once-daily dosage form for MMF.  相似文献   


19.
The purpose of this study was to develop an in situ forming SAIB (sucrose acetate isobutyrate)-PLGA (poly (d, lactide-co-glycolide)) mixture matrix depot for sustained release of risperidone. The factors affecting the risperidone release kinetics were investigated to obtain further insight into the drug release mechanisms. The burst release in vitro was significantly reduced (4.95%) by using DMSO as solvent. And, increasing the PLGA content from 2 to 10% w/w decreased the initial release from 6.95 to 1.05%. The initial release in vivo decreased with increasing PLGA content (2.0% w/w PLGA, C max = 1161.7 ± 550.2 ng ml−1; 10% w/w PLGA, C max = 280.3 ± 98.5 ng ml−1). The persistence (AUC4–20 days) over 20 days increased from 76.8 ± 20.7 to 362.8 ± 75.0 ng d ml−1 by inclusion of 10% PLGA compared with the PLGA-free depot. These results demonstrate that the SAIB–PLGA mixture matrix depot could be useful as a sustained delivery system for risperidone.  相似文献   

20.
This paper is focused on the production and characterization of polymeric nanoparticles obtained by nanoprecipitation. The method consisted of using a confined impinging jet mixer (CIJM), circumventing high-energy equipment. Differences between the use of poly-ε-caprolactone (PCL) and poly(lactide-co-glycolide) (PLGA) as concerns particle mean size, zeta potential, and broad-spectrum antibiotic florfenicol entrapment were investigated. Other analyzed variables were polymer concentration, solvent, and anti-solvent flow rates, and antibiotic initial concentration. To our knowledge, no data were found related to PLGA and PCL nanoparticles comparison using CIJM. Also, florfenicol encapsulation within PCL or PLGA nanoparticles by nanoprecipitation has not been reported yet. The complexity of the nanoprecipitation phenomena has been confirmed, with many relevant variables involved in particles formation. PLGA resulted in smaller and more stable nanoparticles with higher entrapping of florfenicol than PCL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号