首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The physics of the interaction of high-intensity laser pulses with underdense plasma depends not only on the interaction intensity but also on the laser pulse length. We show experimentally that as intensities are increased beyond 10(20) W cm(-2) the peak electron acceleration increases beyond that which can be produced from single stage plasma wave acceleration and it is likely that direct laser acceleration mechanisms begin to play an important role. If, alternatively, the pulse length is reduced such that it approaches the plasma period of a relativistic electron plasma wave, high-power interactions at much lower intensity enable the generation of quasi-mono-energetic beams of relativistic electrons.  相似文献   

2.
Energy directly acquired by an electron from the laser electromagnetic field is quadratically proportional to the laser wavelength. Exploiting this feature, the emerging terawatt picosecond (TWps) CO2 lasers, having an order of magnitude longer wavelength than the well-known table-top terawatt (T3) picosecond solid state lasers, offer new opportunities for strong-field physics research. Laser accelerators serve as an example where application of the new class of lasers will result in enhancement in gas ionization, plasma wave excitation, and relativistic self-focusing. Ponderomotively strong CO2 laser permits a 100 times reduction in the plasma density without impeding the acceleration. The improved performance of the low-pressure laser wakefield accelerators (LWFA) is potentially due to higher electric charge per accelerated bunch and better monochromaticity. The multi-kilowatt average power, high repetition rate capability of the TWps-CO2 laser technology opens new opportunities in development of compact, 1 m long, GeV accelerators and < 1 km long high-luminosity multi-stage LWFA colliders of the TeV scale. The first TWps-CO2 laser is under construction at the BNL Accelerator Test Facility (ATF).  相似文献   

3.
Plasma waves excited by intense laser beams can be harnessed to produce femtosecond duration bunches of electrons with relativistic energies. The very large electrostatic forces of plasma density wakes trailing behind an intense laser pulse provide field potentials capable of accelerating charged particles to high energies over very short distances, as high as 1GeV in a few millimetres. The short length scale of plasma waves provides a means of developing very compact high-energy accelerators, which could form the basis of compact next-generation light sources with unique properties. Tuneable X-ray radiation and particle pulses with durations of the order of or less than 5fs should be possible and would be useful for probing matter on unprecedented time and spatial scales. If developed to fruition this revolutionary technology could reduce the size and cost of light sources by three orders of magnitude and, therefore, provide powerful new tools to a large scientific community. We will discuss how a laser-driven plasma wakefield accelerator can be used to produce radiation with unique characteristics over a very large spectral range.  相似文献   

4.
Experiments of high energy gain laser wakefield acceleration   总被引:2,自引:0,他引:2  
The wakefield acceleration of electrons has a great potential for the future accelerator because of its high accelerating field gradient. We have obtained over 100 MeV acceleration gain by the wakefield generated by a 2 TW Ti: sapphire laser system. In the acceleration experiment, the 17 MeV electrons from a linac were used for the injection beam. The synchronization between the RF signal and the laser pulse was achieved within the time jitter of 3.7 ps. Due to the self-focusing and ionization, a long propagation length and high field gradient were realized. The self-focusing effect of the laser was confirmed by the laser spotsize measurement along the beam axis. The plasma density oscillation was measured by using the frequency domain interferometry. The acceleration gain expected from the plasma density measurement was consistent with the result of the acceleration experiments.  相似文献   

5.
Employing temporally asymmetric laser pulses in the interaction with plasma has been recently proposed for controlling the pointing angle of an electron beam produced by a laser wakefield acceleration at low plasma density and moderate laser intensity. In this paper, results on the electron beam parameters for both symmetric and asymmetric laser pulses are presented. These results show that the highest-quality (well-pointed, well-collimated and bright) electron beams are generated in the current regime only using asymmetric laser pulses, which are longer than the plasma wave’s acceleration period, τ>λp/2c. The interaction between the laser pulse and the accelerated electron beam in the first plasma-wave period is extracted from the experimental results and observed in preliminary two-dimensional particle-in-cell simulation.  相似文献   

6.
Laser-plasma accelerators deliver high-charge quasi-monoenergetic electron beams with properties of interest for many applications. Their angular divergence, limited to a few mrad, permits one to generate a small gamma ray source for dense matter radiography, whereas their duration (few tens of fs) permits studies of major importance in the context of fast chemistry for example. In addition, injecting these electron beams into a longer plasma wave structure will extend their energy to the GeV range. A GeV laser-based accelerator scheme is presented; it consists of the acceleration of this electron beam into relativistic plasma waves driven by a laser. This compact approach (centimetres scale for the plasma, and tens of meters for the whole facility) will allow a miniaturization and cost reduction of future accelerators and derived X-ray free electron laser (XFEL) sources.  相似文献   

7.
The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e-beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e-beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e-beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO(2) laser beam.  相似文献   

8.
The structure of the laser wakefield is analyzed for wide and narrow (in comparison with plasma wavelength) plasma channels with parabolic in radial direction plasma density distributions. The results of analytical theory are confirmed by the self-consistent nonlinear numerical modeling of laser pulse propagation and wakefield generation. In narrow plasma channels the accelerating longitudinal component of the wakefield decreases rapidly with the distance from a laser pulse. This makes possible a short single electron bunch acceleration even if the injected electron beam is much longer than a plasma wavelength.  相似文献   

9.
The compression and acceleration of an external electron bunch into the laser wakefield is studied using 3D modeling with the LAPLAC code and compared to analytical predictions. It is shown, for a laser propagating in a plasma channel, that the nonlinear laser pulse dynamics together with the finite laser spot size influence the electron bunch compression and acceleration due to the reduction of the laser pulse group velocity. The transverse bunch dynamics and loading effect determine the final bunch charge and density and restrict the compressed sizes of the trapped and accelerated electron bunch. The dynamics of the electron bunch are illustrated with a set of parameters where the accelerated bunch acquires an energy of the order of 2 GeV, and 1% energy spread with sub-micron sizes.  相似文献   

10.
Guiding of relativistically intense laser beams in preformed plasma channels is discussed for development of GeV-class laser accelerators. Experiments using a channel guided laser wakefield accelerator at Lawrence Berkeley National Laboratory (LBNL) have demonstrated that near mono-energetic 100 MeV-class electron beams can be produced with a 10 TW laser system. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, is the key to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short-term prospects for intense radiation sources based on laser-driven plasma accelerators.  相似文献   

11.
Laser-driven accelerators will be realized as the next generation particle accelerators in the near future. Their development has been accelerated by success of high-energy gain electron acceleration by means of a laser wakefield excited via interaction of intense ultrashort laser pulses with underdense plasmas. On the basis of achievements of laser wakefield acceleration (LWFA) experiments, a design of LWFA for the second-generation study is considered from the point of view of application to high-energy accelerators, such as future linear colliders.  相似文献   

12.
A laser wakefield electron acceleration experiment has been set-up at Ecole Polytechnique. An electron beam with 3 MeV total energy is injected in a plasma wave generated by laser wakefield using the new LULI CPA laser (400 fs [FWHM], I < 1017 W/cm2). The first results show an effective acceleration of the order of 1 MeV, with a maximum when the electron density is close to the optimum value for which the laser pulse length is about half the plasma wavelength.  相似文献   

13.
Compact accelerators of the future will require enormous accelerating gradients that can only be generated using high power laser beams. Two novel techniques of laser particle acceleration are discussed. The first scheme is based on a solid-state accelerating structure powered by a short pulse CO(2) laser. The planar structure consists of two SiC films, separated by a vacuum gap, grown on Si wafers. Particle acceleration takes place inside the gap by a surface electromagnetic wave excited at the vacuum/SiC interface. Laser coupling is accomplished through the properly designed Si grating. This structure can be inexpensively manufactured using standard microfabrication techniques and can support accelerating fields well in excess of 1 GeV m(-1) without breakdown. The second scheme utilizes a laser beatwave to excite a high-amplitude plasma wave, which accelerates relativistic particles. The novel aspect of this technique is that it takes advantage of the nonlinear bi-stability of the relativistic plasma wave to drive it close to the wavebreaking.  相似文献   

14.
Proton acceleration from the interaction of ultra-short laser pulses with thin foil targets at intensities greater than 10(18) W cm(-2) is discussed. An overview of the physical processes giving rise to the generation of protons with multi-MeV energies, in well defined beams with excellent spatial quality, is presented. Specifically, the discussion centres on the influence of laser pulse contrast on the spatial and energy distributions of accelerated proton beams. Results from an ongoing experimental investigation of proton acceleration using the 10 Hz multi-terawatt Ti:sapphire laser (35f s, 35 TW) at the Lund Laser Centre are discussed. It is demonstrated that a window of amplified spontaneous emission (ASE) conditions exist, for which the direction of proton emission is sensitive to the ASE-pedestal preceding the peak of the laser pulse, and that by significantly improving the temporal contrast, using plasma mirrors, efficient proton acceleration is observed from target foils with thickness less than 50 nm.  相似文献   

15.
Electron acceleration based on the Vp × B acceleration (or the cross-field acceleration) scheme, which has a static magnetic field across the wave propagation direction, is reviewed, specifically the electron linear accelerator using a transverse mode of an EMW is introduced. Penetration and ducting of an intense microwave into overdense plasma are discussed, which show an experimental simulation and precise understanding of the concept of an optical guiding in the laser wakefield accelerator. Coherent radiation of ultrashort microwave pulse by DC-AC radiation conversion scheme has been demonstrated with use of CO2 laser and array of capacitors. This scheme is based on the mechanism of photon acceleration.  相似文献   

16.
We present theoretical and numerical studies of the interaction between relativistically intense laser light and a two-temperature plasma consisting of one relativistically hot and one cold component of electrons. Such plasmas are frequently encountered in intense laser-plasma experiments where collisionless heating via Raman instabilities leads to a high-energetic tail in the electron distribution function. The electromagnetic waves (EMWs) are governed by the Maxwell equations, and the plasma is governed by the relativistic Vlasov and hydrodynamic equations. Owing to the interaction between the laser light and the plasma, we can have trapping of electrons in the intense wakefield of the laser pulse and the formation of relativistic electron holes (REHs) in which laser light is trapped. Such electron holes are characterized by a non-Maxwellian distribution of electrons where we have trapped and free electron populations. We present a model for the interaction between laser light and REHs, and computer simulations that show the stability and dynamics of the coupled electron hole and EMW envelopes.  相似文献   

17.
The working group on Dynamics of Plasma wave Drivers considered the evolution of lasers and particle beams used to drive plasma wakes for plasma accelerators. In addition, the group developed a comparison table of several laser and particle driven plasma accelerator designs. The table shows that differences between the schemes are associated largely with the plasma densities at which they typically operate. Designs with high plasma densities tend to have higher gradients and fewer stages but require repetition rates to achieve a given luminosity than designs at lower densities.  相似文献   

18.
19.
External injection of electron bunches into laser-driven plasma waves so far has not resulted in 'controlled' acceleration, i.e. production of bunches with well-defined energy spread. Recent simulations, however, predict that narrow distributions can be achieved, provided the conditions for properly trapping the injected electrons are met. Under these conditions, injected bunch lengths of one to several plasma wavelengths are acceptable. This paper first describes current efforts to demonstrate this experimentally, using state-of-the-art radio frequency technology. The expected charge accelerated, however, is still low for most applications. In the second part, the paper addresses a number of novel concepts for significant enhancement of photo-injector brightness. Simulations predict that, once these concepts are realized, external injection into a wakefield accelerator will lead to accelerated bunch specs comparable to those of recent 'laser-into-gasjet' experiments, without the present irreproducibility of charge and final energy of the latter.  相似文献   

20.
A plasma-based wakefield acceleration experiment E-157 has been approved at SLAC to study acceleration of parts of an SLC bunch by up to 1 GeV/m over a length of 1 m. A single SLC bunch is used to both induce wakefields in the 1 m long plasma and to witness the resulting beam acceleration. The experiment will explore and further develop the techniques that are needed to apply high-gradient plasma wakefield acceleration to large-scale accelerators. The 1 m length of the experiment is about two orders of magnitude larger than for other high gradient plasma wakefield acceleration experiments and the 1 GeV/m accelerating gradient is roughly ten times larger than that achieved with conventional metallic structures. Using existing SLAC facilities, the experiment will study high gradient acceleration at the forefront of advanced accelerator research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号