首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The radial and axial distribution of mean 1iquid velocity were measured by a.hot-filmanemometer at the impeller region in an aerated and stirred tank 0.287m in diameter.The tangentialjet model for impeller discharge flow used for single phase flow was modified to conform with thecharacteristics of gas-liquid flow.The radial and axial velocity profiles at the impeller region in thegas-liquid stirred tank were calculated by the model The results predicted by the model were in goodagreement with those obtained in experiment.  相似文献   

2.
The aim of this work is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES). The sliding mesh method was used for the coupling between the rotating and the stationary frame of references. The calculations were carried out on the "Shengcao-21C" supercomputer using a computational fluid dynamics (CFD) code CFX5. The flow fields predicted by the LES simulation and the simulation using standard κ-ε model were compared to the results from particle image velocimetry (PIV) measurements. It is shown that the CFD simulations using the LES approach and the standard κ-ε model agree well with the PIV measurements. Fluctuations of the radial and axial velocity are predicted at different frequencies by the LES simulation. Velocity fluctuations of high frequencies are seen in the impeller region, while low frequencies velocity fluctuations are observed in the bulk flow. A low frequency velocity fluctuation with a nondimensional frequency of 0.027Hz is predicted by the LES simulation, which agrees with experimental investigations in the literature. Flow circulation patterns predicted by the LES simulation are asymmetric, stochastic and complex, spanning a large portion of the tanks and varying with time, while circulation patterns calculated by the simulation using the standard κ-ε model are symmetric. The results of the present work give better understanding to the flow instabilities in the mechanically agitated tank. However, further analysis of the LES calculated velocity series by means of fast Fourier transform (FFT) and/or spectra analysis are recommended in future work in order to gain more knowledge of the complicated flow phenomena.  相似文献   

3.
In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical probes and an EKTAPRO 1000 high speed motion analyzer. It demonstrates that the radial profile of slug flow void fraction is parabolic. Influenced by the falling liquid film, the radial profile curve of liquid slug void fraction in the wake region is also parabolic. Since fully turbulent velocity distribution is built up in the developed region,the void fraction profile in this region is the saddle type. At given superficial liquid velocity, the liquid slug void fraction increases with gas velocity. The radial profiles of liquid slug void fraction at different axial locations are all saddle curves, but void fraction is obviously high around the centerline in the entrance region. The nearer the measuring station is from the entrance, the farther the peak location is away from the wall.  相似文献   

4.
Radial profiles of solid concentration and velocity for concurrent downward gas-solid suspension in a140mm inside diameter fast fluidized bed were investigated.The influence of gas velocity,solid circulating rateand axial position on radial profiles of solid concentration and particle velocity has been examined.It hasbeen found that an annular region of high solid concentration exists at r/R=0.94.At both the center and wallregion,the solid concentration and the particle velocities are relatively low.The shape of radial solid con-centration profile curves is mainly dependent on the cross-section averaged voidage,and the shape of radialparticle velocity profile is mainly affected by the gas velocity and cross-section averaged voidage.Based on the radial profiles of solid concentration and particle velocity,the solid mass flux profile and thenonuniformity of solids flow are discussed in this paper.It is shown that solids flow in CDFFB is much moreuniform than that in UFFB.  相似文献   

5.
This study is devoted to gas-solid mass transfer behavior in heterogeneous two-phase flow. Experiments were carried out in a cold circulating fluidized bed of 3.0m in height and 72mm in diameter with naphthalene particles. Axial and radial distributions of sublimated naphthalene concentration in air were measured with an online concentration monitoring system HP GC-MS. Mass transfer coefficients were obtained under various operating condition, showing that heterogeneous flow structure strongly influences the axial and radial profiles of mass transfer coefficients. In the bottom dense region, mass transfer rate is high due to intensive dynamic behavior and higher relative slip velocity between gas and clusters. In the middle transition region and the upper diluter region, as a result of low mass transfer driving force and the influence of flow structure, mass transfer rate distribution becomes non-uniform. In conclusion, among the operating parameters influencing mass transfer coefficients, the superficial gas velocity is the most important factor and the solid circulation rate should be also taken into account.  相似文献   

6.
Due to the increasing global demand for industrial gas,the development of large-scale cryogenic air separation systems has attracted considerable attention in recent years.Increasing the height of the adsorption bed in a vertical radial flow adsorber used in cryogenic air separation systems may efficiently increase the treatment capacity of the air in the adsorber.However,uniformity of the flow distribution of the air inside the adsorber would be deteriorated using the height-increasing method.In order to reduce the non-uniformity of the flow distribution caused by the excessive height of adsorption bed in a vertical radial flow adsorber,a novel parallel connection method is proposed in the present work.The experimental apparatus is designed and constructed;the Computational Fluid Dynamics (CFD) technique is used to develop a CFD-based model,which is used to analyze the flow distribution,the static pressure drop and the radial velocity in the newly designed adsorber.In addition,the geometric parameters of annular flow channels and the adsorption bed thickness of the upper unit in the parallelconnected vertical radial flow adsorber are optimized,so that the upper and lower adsorption units could be penetrated by air simultaneously.Comparisons are made between the height-increasing method and the parallel connection method with the same adsorber height.It is shown that using the parallel connection method could reduce the difference between the maximum and minimum radial static pressure drop by 86.2% and improve the uniformity by 80% compared with those of using the height-increasing method.The optimal thickness ratio of the upper and lower adsorption units is obtained as 0.966,in which case the upper and lower adsorption units could be penetrated by air simultaneously,so that the adsorbents in adsorption space could be used more efficiently.  相似文献   

7.
规整填料内单相流的LDV实验研究   总被引:1,自引:0,他引:1  
To date, many models have been developed to calculate the flow field in the structured packing by the computational fluid dynamics (CFD) technique, but little experimental work has been carried out to serve the vali-dation of flow simulation. In this work, the velocity profiles of single-phase flow in structured packing are measured at the Reynolds numbers of 20.0, 55.7 and 520.1, using the laser Doppler velocimetry (LDV). The time-averaged and instantaneous velocities of three components are obtained simultaneously. The CFD simulation is also carried out to numerically predict the velocity distribution within the structured packing. Comparison shows that the flow pattern, velocity distribution and turbulent kinetic energy (for turbulent flow) on the horizontal plane predicted by CFD simulation are in good agreement with the LDV measured data. The values of the x-and z-velocity components are quantitatively well predicted over the plane in the center of the packing, but the predicted y-component is sig-nificantly smaller than the experimental data. It can be concluded that experimental measurement is important for further improvement of CFD model.  相似文献   

8.
耦合反应器提升管段颗粒速度分布及约束特性   总被引:1,自引:0,他引:1       下载免费PDF全文
王德武  张海光  卢春喜 《化工学报》2008,59(12):3042-3049
A large-scale cold model experimental setup of a riser-fluidized bed coupled reactor was established according to the olefin reduction technology with an auxiliary reactor for FCC naphtha upgrading.Distributions of particle velocity in the riser section were experimentally investigated in the setup.Furthermore,the restriction index of particle velocity was defined to quantitatively show the restriction effects of the riser outlet lotus-shaped distributor and the upper fluidized bed on the particle flow behavior in the riser.The experimental results showed that the riser could be divided into two regions in the longitudinal direction,i.e.,lower traditional transport region and upper restriction region.In the longitudinal direction,the averaged cross-sectional particle velocity in the traditional transport region increased firstly,and then tended to be smooth,while decreased in the restriction region.With the increase of static bed height in the upper fluidized bed,the local particle velocity decreased,and the tendency of change in the core region is more than that in the wall region.Restriction effects of the lotus-shaped distributor and the upper fluidized bed on particle flow behavior enhanced with the increases of superficial gas velocity,solids flux and static bed height in the upper fluidized bed.In the same cross-section,outlet restriction effects enhanced with the increase of the dimensionless radial position r/R,and would not change when r/R≥0.5.  相似文献   

9.
一串上升气泡周围流体的湍动特性(英文)   总被引:1,自引:0,他引:1  
The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate the turbulent characteristic of fluid induced by a chain of bubbles rising in Newtonian and non-Newtonian fluids. The instantaneous flow field, turbulent kinetic energy (TKE) and TKE dissipation rate were measured. The results demonstrated that the TKE profiles were almost symmetrical along the column center and showed higher values in the central region of the column. The TKE was enhanced with the increase of gas flow and decrease of liquid viscosity. The maximum TKE dissipation rate appeared on both sides of the bubble chain, and increased with the increase of gas flow rate or liquid viscosity. These results provide an understanding for gas-liquid mass transfer in non-Newtonian fluids.  相似文献   

10.
Particle Image Velocimetry (PIV) has been used to investigate turbulence characteristics in a 0.48 m diameter stirred vessel filled to a liquid height ( H = 1.4T ) of 0.67 m. The agitator had dual Rushton impellers of 0.19 m diameter ( D = 0.4T ). The developed flow patterns depend on the clearance of the lower impeller above the base of the vessel, the spacing between the two impellers, and the submergence of the upper impeller below the liq- uid surface. Their combinations can generate three basic flow patterns, named, parallel, merging and diverging flows. The results of velocity measurement show that the flow characteristics in the impeller jet flow region changes very little for different positions. Average velocity, trailing vortices and shear strain rate distributions for three flow patterns were measured by using PIV technique. The characteristics of trailing vortex and its trajectory were described in detail for those three flow patterns.
Since the space-resolution of PIV can only reach the sub-grid rather than the Kolmogorov scale, a large-eddy PIV analysis has been used to estimate the distribution of the turbulent kinetic energy dissipation. Comparison of the distributions of turbulent kinetic energy and dissipation rate in merging flow shows that the highest turbulent kinetic energy and dissipation are both located in the vortex regions, but the maxima are at somewhat different lo- cations behind the blade. About 37% of the total energy is dissipated in dual impeller jet flow regions. The obtained distribution of shear strain rate for merging flow is similar to that of turbulence dissipation, with the shear strain rate around the trailing vortices much higher than in other areas.  相似文献   

11.
旋风分离器旋进涡核的数值模拟   总被引:4,自引:2,他引:2       下载免费PDF全文
采用雷诺应力模型对旋风分离器内三维非稳态流场进行了模拟计算。结果表明,旋风分离器全空间内都存在旋进涡核现象。对旋进涡核现象和旋进涡核中心的运动规律进行了详细的描述,分析了不同轴向位置的旋进涡核区域内不同点的速度波动幅值和频率,得到了旋进涡核影响范围以及速度波动规律;通过分析旋进涡核中心的运动频率,得到了旋进涡核出现的强度。模拟结果与采用热线风速仪以及激光粒子成像技术(PIV)测定的实验结果基本吻合。研究结果可以分析旋进涡核对分离效率和压降的影响。  相似文献   

12.
Understanding the swirling flow in a gas cyclone is of great importance in improving the cyclone design. Once the three-dimensional strong swirling flow is fully understood, cyclone performance such as pressure drop and separation efficiency can be improved by optimizing the cyclone design. The swirling flow was investigated by the stereoscopic particle image velocimetry (Stereo-PIV) in this work. The instantaneous whole-field tangential, axial, and radial velocities were measured simultaneously in the cylindrical and conical separation zone, and in the dust hopper area of the cyclone with gas inlet velocity of .The time-averaged flow pattern in the cylindrical and conical sections of the cyclone showed: a typical Rankine vortex with inner quasi-forced vortex and outer quasi-free vortex which is generated by tangential gas velocity; inner upward flow and outer downward flow of axial gas velocity; and centripetal flow in the region close to the wall due to the presence of radial gas velocity. In the dust hopper, a secondary longitudinal circular flow is formed in the annulus area between the conical body and the cylindrical wall. Experimental results indicate that the separated particles may be re-entrained into the cyclone from the bin to degrade the separation efficiency of the cyclone.  相似文献   

13.
双入口直切式旋风分离器流场内旋进涡核现象的研究   总被引:1,自引:1,他引:1  
主要研究了双入口直切式旋风分离器流场中的一种涡核非稳态现象———旋进涡核。实验表明 ,旋进涡核存在于分离器排尘口下部及锥体中下部 ,在排尘口处涡核摆动最强烈 ,同时涡核的摆动在一定操作参数下具有一定的频率和幅值 ,因此势必会造成粉尘的夹带返混 ,致使分离器效率降低。与单入口旋风分离器相比 ,双入口直切式旋风分离器内旋进涡核频率降低 ,幅值减小 ,但范围不变。说明入口形式是否轴对称对旋进涡核的存在与否不起主要作用  相似文献   

14.
采用雷诺应力模型对环流式旋风除尘器中三维非稳态流场进行了数值模拟计算.分析了环流式旋风分离器中旋进涡核的频率及幅值沿径向和轴向的变化规律.比较了环流式旋风分离器与 DⅢ型旋风分离器中旋进涡核的特征参数.结果表明:环流式旋风分离器与 DⅢ型旋风分离器相比,环流式旋风分离器中的旋进涡核平均波动频率降低了58%,最大波动幅值减少26%.  相似文献   

15.
采用RSM非稳态湍流模型对循环流化床锅炉用旋风分离器内气相流场进行了数值模拟。计算值与实验值比较吻合。数值计算的结果表明:排气管下口存在明显的短路流,排尘口附近存在明显的返混现象;排气管直径增加,分离空间切向速度值降低,上行流轴向速度减小。用CFD方法计算的旋风分离器内流场可为高效CFB锅炉用旋风分离器的设计提供参考依据。  相似文献   

16.
蜗壳式旋风分离器全空间三维时均流场的结构   总被引:26,自引:15,他引:26  
《化工学报》2003,54(4):549-556
采用激光多普勒测速系统(LDV)对蜗壳式旋风分离器全空间内三维湍流的时均流场进行了实验测定与分析,重点讨论了灰斗、环形空间和排气管的流场特点.分离空间内时均流场是外侧准自由涡与内侧准强制涡的典型结构.环形空间的入口部位有多个纵向二次涡,其他大部分空间顶部出现纵向二次环流,切向速度和径向速度的分布呈现非轴对称性,入口气量沿高度分布不均匀.灰斗的顶部也存在纵向二次环流.排气管内轴向速度分布与分离空间内的分布形态迥异.  相似文献   

17.
The instability characteristics of gas swirling flow in a cyclone were investigated experimentally by measuring the instantaneous tangential velocity with the hot-wire anemometry. The results showed that the instantaneous tangential velocity fluctuated continuously with time at both low and high frequencies. Further analysis of measured data regarding time and frequency domain by probability density and spectral methods revealed that the velocity fluctuation was affected not only by the turbulence flow itself but also by gas swirling flow instability. Also, the distributions of dominant frequency and amplitude indicated that low-frequency velocity fluctuation caused by the instability had the transfer behavior and attenuation character, which could be characterized by the dominant frequency that varied little along the radial position and decreased gradually along the axial direction, while the amplitude increased significantly with decreased radial position. Due to the gas swirling instability, the turbulence intensity and the fine particle diffusion were enhanced, which would degrade the separation efficiency of cyclone.  相似文献   

18.
环流式旋风除尘器内流场的数值模拟   总被引:5,自引:1,他引:5  
采用 CFD 模拟软件 Fluent 6.2 提供的雷诺应力模型(RSM)对环流式旋风除尘器内的流场进行了数值模拟研究.并与热线热膜风速仪实验测试结果进行了比较.模拟结果与实验结果基本吻合.结果表明:环流式旋风除尘器特殊的流路设计,避免了内外旋涡的相互干扰,增强了旋转速度,规整了流形,减小了强湍流对性能的影响,消除了旋风除尘器易产生的短路流和二次返混,提高了除尘效率,降低了设备的压降.通过对影响除尘器性能的局部涡进行分析,为进一步优化结构提供了参考依据.  相似文献   

19.
旋风分离器入口形式对内流场非稳态特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
旋进涡核(PVC)现象会削弱旋风分离器对细颗粒的捕集效率。利用数值模拟方法研究纯气相流场中涡核的运动频率和偏心程度。结果表明:随着蜗壳包角的增大,排尘口截面涡核的运动频率和偏心程度都逐渐减小,PVC现象被削弱,蜗壳包角大于270°以后,纯气相流场中的PVC现象基本消失。入口切进度对排尘口截面涡核运动特性的影响会因蜗壳包角而有所不同。相比于入口结构的对称性,涡核偏心程度与下行气流的能量损失相关性更强。下行气流的能量损失越多,下行期间汇入内旋流的气流能量越高,内旋上行气流受到的横向扰动越大,汇入气流的能量超过某一阈值后,引发涡核摆动。而涡核旋转频率受下行气流能量损失的影响则较小。  相似文献   

20.
旋风分离器有无灰斗对气相流场动态特性的影响   总被引:1,自引:0,他引:1  
旋风分离器底端的排尘口依据气固分离工艺的要求分别采用有灰斗或无灰斗结构。但灰斗是否存在对旋风分离器内部流场影响的研究尚显不足。为此,采用热线风速仪对排尘口有灰斗和无灰斗的旋风分离器气相流场的切向速度进行了测量。结果表明旋风分离器内旋转流具有较强的不稳定性,表现为瞬时切向的速度低频高幅值波动变化。灰斗的存在进一步导致了排尘口附近瞬时切向速度的强烈波动。通过对瞬时切向速度的频谱分析表明,有灰斗结构的旋风分离器瞬时切向速度有2个主频,分别是存在于整个空间的全空间主频和出现在锥体下端排尘口附近区域的局部主频。无灰斗结构的旋风分离器仅有1个全空间主频。全空间主频是气体旋流中心围绕旋风分离器几何中心摆动造成的,而局部主频是灰斗气体回流造成的。灰斗气体回流主频与全空间旋转流摆动的主频叠加形成了锥体下端排尘口附近区域瞬时切向速度的2个主频。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号