首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
吸附分离CH4/N2可行性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
The separation between methane and nitrogen is an inevitable and important task in the C1 chemical technology and the utilization of methane from coalbed, yet it is considered to be one of the tough tasks in the field of separation. Pressure swing adsorption is a preferable technology if an adsorbent that allowing a large coefficient of separation for the CH4/N2 system is available. The separation coefficients between CH4 and N2 were obtained on analyzing the breakthrough curves measured experimentally with nine adsorbents. A technique of measuring the temperature-pulse was incorporated in the experiments, and the reliability of the result was improved.Superactivated carbon with large surface area and plenty of micropores was shown to have the largest separation coefficient and to be promising for the commercial utilization.  相似文献   

2.
Diffusion of pure H2, CO, N2,O2 and CH4 gases through nanoporous carbon membrane is investigated by carrying out non-equilibrium molecular dynamics (NEMD) simulations. The flux, transport diffusivity and activation energy for the pure gases diffusing through carbon membranes with various pore widths were investigated. The simulation results reveal that transport diffusivity increases with temperature and pore width, and its values have a magnitude of 10^-7 m^2·s^-1 for pore widths of about 0.80 to 1.21 nm at 273 to 300 K. The activation energies for the gases diffusion through the membrane with various pore widths are about 1-5 kJ·mol^-1, The results of transport diffusivities are comparable with that of Rao and Sircar (J. Membr. Sci., 1996), indicating the NEMD simulation method is a good tool for predicting the transport diffusivities for gases in porous materials, which is always difficult to be accurately measured by experiments.  相似文献   

3.
The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The reforming reactions were carried out at atmosphenc pressure in the temperature range of 500-2700℃. The activity and stability of the catalyst, carbon formation, and syngas (H2/CO) ratio were determined. Various techniques were applied for characterization of both fresh and used catalysts. Addition of La2O3 to the catalyst matrix improved the dispersion of Ni and adsorption of CO2, thus its activity and stability enhanced.  相似文献   

4.
The performance characteristics of isothermal fluidized bed syngas methanation for substitute natural gas are investigated over a self-made Ni–Mg/Al2O3 catalyst. Via atmospheric methanation in a laboratory fluidized bed reactor it was clarified that the CO conversion varied in 5% when changing the space velocity in 40–120 L·g?1·h?1 but the conversion increased obviously by raising the superficial gas velocity from 4 to 12.4 cm·s?1. The temperature at 823 K is suitable for syngas methanation while obvious deposition of uneasy-oxidizing Cγoccurs on the catalyst at temperatures around 873 K. From a kinetic aspect, the lowest reaction temperature is suggested to be 750 K when the space velocity is 60 L·g?1·h?1. Raising the H2/CO ratio of the syngas increased proportionally the CO conversion and CH4 selectivity, showing that at enough high H2/CO ratios the active sites on the catalyst are sufficient for CO adsorption and in turn the reaction with H2 for forming CH4. Introducing CO2 into the syngas feed suppresses the water gas shift and Boudouard reactions and thus increased H2 consumption. The ratio of CO2/CO in syngas should be better below 0.52 because varying the ratio from 0.52 to 0.92 resulted in negligible increases in the H2 conversion and CH4 selectivity but decreased the CH4 yield. Introducing steam into the feed gas affected little the CO conversion but decreased the selectivity to CH4. The tested Ni–Mg/Al2O3 catalyst manifested good stability in structure and activity even in syngas containing water vapor.  相似文献   

5.
PTFE-F-PbO2 电极在H2SO4溶液中的析氧行为   总被引:1,自引:0,他引:1  
F-PbO2 electrode and polytetrafluoroethylene (PTFE) doped F-PbO2 electrode (PTFE-F-PbO2) were prepared on a plexiglas sheet substrate by a series of procedure including chemical and electrochemical depositions. The electrochemical activities of these two electrodes for oxygen evolution (OE) reaction were examined by electrochemical tests. In comparison with F-PbO2, PTFE-F-PbO2 electrode exhibited larger active surface area and higher oxygen vacancy deficiency, which resulted in its higher electrocatalytic activity for OE. In addition, both exchange current density and activation energy of the electrodes for OE were calculated in terms of active surface area. The values of exchange current density and activation energy in 0.5 mol·L^-1 H2SO4 aqueous solution were 1.125×10^ -3 mA·cm^-2 and 18.62 kJ·mol^-1 for PTFE-F-PbO2, and 8.384×10^-4 mA·cm^- 2 and 28.98 kJ·mol^-1 for F-PbO2, respectively. Because these values are calculated on the basis of the active surface areas of the electrodes, the enhanced activity of PTFE-F-PbO2 can be attributed to an increase in oxygen vacancy deficiency of PbO2 due to doping by PTFE. The influence of PTFE adulteration on the activity of PbO2 film electrode for OE was investigated in detail in this study.  相似文献   

6.
SO4^2-/TiO2-MoO3, a novel solid superacid, has been prepared and its catalytic activity at different synthetic conditions was examined with esterification of n-butanoic acid and n-butyl alcohol as probing reaction.The optimum conditions were also found, that is, the mass ratio of MoO3 used in the compound is 25%, the calcination temperature 450℃, and the soaked consistency of H2SO4 is 0.5mol.L^-1. Then it was applied in the catalytic synthesis of six similar important ketals and acetals as catalyst and revealed high catalytic activity. Under the condition that the molar ratio of aldehyde/ketone to glycol was 1:1.5, the mass ratio of the catalyst to the reactants was 0.5% and the reaction time 1.0 h, the yield of ketals and acetals reached up to 63.2%. The catalyst can be easily recovered and reused.  相似文献   

7.
To study the feasibility of CO2 geological sequestration,it is needed to understand the complicated mul- tiple-phase equilibrium and the densities of aqueous solution with CO2 and multi-ions under wide geological condi- tions(273.15—473.15K,0—60MPa),which are also essential for designing separation equipments in chemical or oil-related industries.For this purpose,studies on the relevant phase equilibria and densities are reviewed and analyzed and the method to improve or modify the existing model is suggested in order to obtain more reliable predictions in a wide temperature and pressure range.Besides,three different models(the electrolyte non random two-liquid(ELECNRTL),the electrolyte NRTL combining with Helgeson model(ENRTL-HG),Pitzer activity coefficient model combining with Helgeson model(PITZ-HG))are used to calculate the vapor-liquid phase equilib- rium of CO2-H2O and CO2-H2O-NaCl systems.For CO2-H2O system,the calculation results agree with the experimental data very well at low and medium pressure(0—20MPa),but there are great discrepancies above 20MPa.For the water content at 473.15K,the calculated results agree with the experimental data quite well.For the CO2-H2O-NaCl system,the PITZ-HG model show better results than ELECNRTL and ENRTL-HG models at the NaCl concentration of 0.52mol·L ^-1 .Bur for the NaCl concentration of 3.997mol·L ^-1 ,using the ELECNRTL and ENRTL-HG models gives better results than using the PITZ-HG model.It is shown that available experimental data and the thermodynamic calculations can satisfy the needs of the calculation of the sequestration capacity in the temperature and pressure range for disposal of CO2 in deep saline aquifers.More experimental data and more accurate thermodynamic calculations are needed in high temperature and pressure ranges(above 398.15K and 31.5MPa).  相似文献   

8.
The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relationships between the operating conditions and the LPVE in order to develop a practical method for determining the operation conditions and selecting an organic solvent for SAS process. The PR equation of state with vdW-1 mixing rule is used to calculate the LPVE for CO2/toluene, CO2/acetone and CO2/ethyl acetate systems, and the results show that the LPVE for each CO2/organic solvent system decreases as the temperature increases. The relationship between the LPVE and the solubility of CO2 in the liquid phase for CO2/organic solvent systems is investigated, and the results show that the LPVE is determined directly by the solubility of CO2 in the liquid phase, xCO2, and can be related to xCO2 independently. No matter what system of CO2/organic solvent is and how different the temperature is, the LPVEs have little difference as long as the solubility of CO2 in the liquid phase, xCO2, keeps constant. The lower temperature is always favorable to the SAS process. The higher the solubility of CO2 in an organic solvent under certain operation condition, the more suitable it is to the SAS process.  相似文献   

9.
In this work, esterification of acetic acid and methanol to synthesize methyl acetate in a batch stirred reactor is studied in the temperature range of 305.15–333.15 K. Sulfuric acid is used as the homogeneous catalyst with concentrations ranging from 0.0633 mol·L?1 to 0.3268 mol·L?1. The feed molar ratio of acetic acid to methanol is varied from 1:1 to 1:4. The influences of temperature, catalyst concentration and reactant concentration on the reaction rate are investigated. A second order kinetic rate equation is used to correlate the experimental data. The forward and backward reaction rate constants and activation energies are determined from the Arrhenius plot. The developed kinetic model is compared with the models in literature. The developed kinetic equation is useful for the simulation of reactive distillation column for the synthesis of methyl acetate.  相似文献   

10.
Fe3O4 magnetic nanoparticles were prepared by the aqueous co-precipitation of FeCl3-6H2O and FeCl2-4H2O with addition of ammonium hydroxide. The conditions for the preparation of Fe3O4 magnetic nanoparticles were optimized, and Fe3O4 magnetic nanoparticles obtained were characterized systematically by means of transmission electron microscope (TEM), dynamic laser scattering analyzer (DLS) and X-ray diffraction (XRD). The results revealed that the magnetic nanoparticles were cubic shaped and dispersive, with narrow size distribution and average diameter of 11.4 nm. It was found that the homogeneous variation of pH value in the solution via the control on the dropping rate of aqueous ammonia played a critical role in size distribution. The magnetic response of the product in the magnetic field was also analyzed and evaluated carefully. A 32.6 mT magnetic field which is produced by four ferromagnets was found to be sufficient to excite the dipole moments of 0.05 g Fe3O4 powder 2 cm far away from the ferromagnets. In conclusion, the Fe3O4 magnetic nanoparticles with excellent properties were competent for the magnetic carders of targeted-drug in future application.  相似文献   

11.
CH4-CaSO4和H2S-Fe2O3反应体系的热力学和动力学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Rednction) are the main reason to make disappearance of the hydrocarbons. The work in this field has often been the subject of much research work in recent years. In this paper, the thermodynamics of CH4-CaSO4 and H2S-Fe2O3 systems is discussed to investigate the possibility of reactions. It is found that these two reactions can proceed spontaneously.Increasing temperature is favorite for CH4-CaSO4 system but disfavorite for H2S-Fe2O3 system. Thermal simulation experiments were carried out using autoclave at high temperature and high pressure. The properties of the products were characterized by microcoulometry, FT-IR and XRD methods. On the basis of the experimental data, a reaction kinetic model is developed and kinetic parameters are determined.  相似文献   

12.
CO_2吸附强化CH_4/H_2O重整制氢是提供低成本高纯氢气和实现CO_2减排的方法之一。其中,催化剂和吸附剂是该工艺的重要组成部分,其活性与选择性制约了反应速率和产率,寿命长短关系到生产成本。综述了CO_2吸附强化CH_4/H_2O重整制氢催化剂和吸附剂的研究现状及存在的问题,机械混合的催化剂与吸附剂在反应过程中存在吸附产物包覆催化活性位点的问题,导致催化剂活性迅速下降。针对该问题,进一步探讨了不同结构双功能复合催化剂的结构特性、研究现状及其在循环-再生过程中存在的问题,核壳型双功能催化剂具有吸附组分与催化剂组分相对独立、催化组分分散分布和比表面积大等优点,在吸附强化制氢中有进一步研究的潜力。利用双功能催化剂的结构特点,实现反复循环再生过程中催化与脱碳反应的匹配,是推动CO_2吸附强化CH_4/H_2O重整制氢技术工业化发展的关键。  相似文献   

13.
The kinetics of CO2 reforming of methane has been studied at 976-1033K on a commercial NiO/CaO/Al2O3 catalyst in a packed-bed continuous reactor. The reaction was carried out at atmospheric pressure and CO2/CH4 ratio > 2. The Hougen-Watson rate models were fitted to experimental data assuming the dissociative adsorption of methane as the rate-determining step. The reaction rate showed an effective reaction order of about unity for CH4. The apparent activity energy was found to be 104kJ·mol-1. Therefore the kinetic reaction parameters were determined and a possible reaction mechanism was proposed.  相似文献   

14.
李志林  张志芳  侯静静 《广东化工》2012,39(9):69-70,86
本实验用反滴法化学共沉淀工艺合成Fe3O4。再以制备的Fe3O4为核心,采用液相沉积法制备Fe3O4/TiO2-CaSO4核壳材料。对样品的形态、结构和光学性质进行了X射线荧光和X射线衍射(XRD)表征。以催化降解活性大红BES来考察其光催化性能,并研究了沉淀时pH、煅烧温度、PEG(4000)加入量对粉体催化性能的影响。结果表明:所制备的粉体无论从节能方面还是从环保方面均是一个优良的催化剂;当粉体用量为4.5 g/L,50 mg/L的活性大红溶液在紫外灯下照射120 min后,降解率可达到99.5%。并且,所制备的粉体还可以回收利用。  相似文献   

15.
直接NaBH4/H2O2燃料电池的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
直接NaBH4/H2O2燃料电池是一种燃料和氧化剂均为液体的新型燃料电池,它直接以NaBH4溶液为阳极燃料,H2O2 为阴极氧化剂。该燃料电池有很高的输出电压、能量转化效率和能量密度,并且反应中能产生8个电子。本文对硼氢化钠电氧化材料、过氧化氢电还原材料,以及直接NaBH4/H2O2燃料电池的性能进行了综述。  相似文献   

16.
SnO2对尖晶石LiMn2O4电极材料的改性   总被引:1,自引:0,他引:1  
为提高锂离子电池正极材料LiMn2O4在高温下的循环性能,以Sn(OCH2CH2OCH3)4为原料,采用溶胶-凝胶法在LiMn2O4表面包覆了一层稳定的二氧化锡层. 用X射线粉末衍射和扫描电镜对包覆前后LiMn2O4的结构进行了表征. 结果表明,二氧化锡包覆层的存在减少了LiMn2O4与电解液的直接接触,有效地抑制了高温下LiMn2O4与电解液的相互作用,减少了锰在电解质中的溶解;经表面修饰处理后,LiMn2O4正极材料的初始容量虽稍有下降,但高温下(60℃)的充放电循环稳定性能得到了显著提高,40次循环后的高温容量衰减由改性前的31%降低到12%,并且电池的自放电速率也显著减小. 作为锂离子电池的正极材料,该表面改性材料是众多取代LiCoO2材料中最具竞争力的材料之一,也有望成为锂离子动力电池的正极材料.  相似文献   

17.
考察了助剂Mg、Ce修饰的纳米A l2O3负载N i催化剂对CH4、CO2重整反应制合成气的反应性能影响,采用正交实验筛选催化剂。结果表明,N i含量在9%~13%时,催化剂表现出较好的活性;随Mg含量的增加,反应活性基本呈下降趋势,说明Mg降低了催化剂体系的反应性能;Ce的加入总体上提高了反应活性,但是当Ce含量为3%时,反应活性最好;从不经预还原实验和低温点反应实验推断出,CH4和CO2重整反应中关键反应步骤是CH4的裂解;助剂Ce有利于提高催化剂的稳定性,而Mg却会使催化剂的稳定性下降很快。  相似文献   

18.
孟德润  赵翔  周俊虎  岑可法 《化工学报》2005,56(12):2410-2414
利用一维沉降炉,对3种煤在O2/CO2和空气两种气氛下燃烧NOx析出特性进行了比较,分析了炉膛温度、过量空气系数对NOx生成量的影响,并对O2/CO2气氛下NOx的生成和破坏机理进行了分析.研究发现两种气氛下NOx都有一个峰值出现,挥发分含量高的煤种峰值靠前, 挥发分含量低的煤种峰值靠后,O2/CO2条件下,峰值出现较空气条件下提前且有所下降;空气条件下NOx的生成量随温度提高较快地增加,而O2/CO2气氛中NOx的生成量随温度变化比较缓慢;在两种气氛下NOx的峰值均随过量空气系数的增加而增加,高挥发分煤在O2/CO2气氛下NOx峰值低于空气条件下峰值,而低挥发分煤则受影响较小.  相似文献   

19.
党艳艳 《炭素》2013,(2):36-41
为消除低浓度煤层气对煤层开采存在的安全隐患,提出了利用甲烷和氧气在炭分子筛上的动力学差异进行脱氧的工艺。采用容积法测定了纯CH4和O2在炭分子筛颗粒上的吸附动力学数据,并利用单床变压吸附装置测定了混合气体在298.15K,各压力下的穿透曲线。研究结果显示:吸附初期,O2在CMS上的扩散速率明显大于CH4;在混合体系穿透曲线上,O2的穿透时间远大于CH4,炭分子筛固定床表现出对O。的优先吸附选择性,可以实现出口直接富集甲烷的目的。0.4MPa时,当产品气中CH4含量为92.44%时,CH4回收率为73.27%。  相似文献   

20.
CO2置换CH4水合物中CH4的实验和动力学   总被引:2,自引:0,他引:2       下载免费PDF全文
在自行设计的反应装置中考察了2.8 MPa和3.25 MPa压力下,温度271.2、273.2和276.0 K时CO2气体置换十二烷基硫酸钠(SDS)体系CH4水合物中CH4的置换过程。实验数据表明,在反应的前50 h,CH4水合物的分解速率较快,其后分解速率变慢。冰点以上CH4水合物的分解速率较快。基于动力学数据,建立了SDS体系置换反应过程中CH4水合物的分解动力学模型和CO2水合物的生成动力学模型。计算得到CH4-CO2置换反应过程中CH4水合物的分解活化能为28.81 kJ·mol-1,CO2水合物的生成活化能为68.40 kJ·mol-1。数据表明,CH4水合物的分解可能受置换反应过程中水分子的重排控制,而CO2水合物的生成可能受CO2气体在水合物中的扩散控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号