共查询到20条相似文献,搜索用时 0 毫秒
1.
Micron-size superparamagnetic poly(styrene-divinylbenzene-glycidyl methacrylate) (PSt-DVB-GMA)spheres were prepared via a modified suspension copolymerization method. Oleic acid coated magnetite (Fe3O4) nanoparticles made by co-precipitation were first mixed with monomers of St, DVB, GMA, and benzoyl peroxide (BPO) to form oil in water suspension with the presence of poly(vinyl pyrrolidone) (PVP-K30) as a stabilizer.Then the temperature of mixture was increased at a controlled rate to obtain small and relatively uniform droplets.Finally, the copolymerization reaction was initiated by the decomposition of BPO. The morphology and properties of magnetic PSt-DVB-GMA microspheres were examined by SEM, TEM, VSM, XRD and FT-IR. The magnetic microspheres obtained have very small size (about 4-7 μm) in diameter with narrow size distribution and superparamagnetic characteristics. Powder X-ray diffraction measurements show the inverse cubic spinel structure for the magnetite dispersed in polymer microspheres. FT-IR spectroscopy indicates extensive oxirane groups existed on the surface of magnetic PSt-DVB-GMA microspheres. 相似文献
2.
Non-porous superparamagnetic polymer microspheres with epoxy groups were prepared by dispersion polymerization of glycidyl methacrylate (GMA) in the presence of magnetic iron oxide (Fe3O4) nanoparticles coated with oleic acid. The polymerization was carried out in the ethanol/water medium using polyvinylpyrrolidone (PVP) and 2,2'-azobisisobutyronitrile (AIBN) as stabilizer and initiator, respectively. The magnetic microspheres obtained were characterized with scanning electron microscopy (SEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy (FTIR). The results showed that the magnetic microspheres had an average size of 1μm with superparamagnetic characteristics. The saturation magnetization was found to be 4.5emu·g-1. There was abundance of epoxy groups with density of 0.028 mmol·g-1 in microspheres. The magnetic PGMA microspheres have extensive potential uses in magnetic bioseparation and biotechnology. 相似文献
3.
表面含羧基的磁性高分子微球的制备和表征 总被引:8,自引:0,他引:8
以共沉淀法制备的Fe3O4为磁性来源,选用丙烯酰胺、N,N′-亚甲基双(丙烯酰胺)和丙烯酸分别作为聚合单体、交联剂和功能基单体,通过反相乳液聚合,包裹制备携带羧基的磁性高分子微球。考察了Fe3O4投入量、功能基单体量、交联剂量、聚合时间和介质的变化对磁性高分子微球的形态、磁性质及表面羧基含量的影响。采用SEMI、R、721E分光光度计和化学滴定法进行表征,制备出粒径在500 nm~10μm,表面羧基携带量为1.0 mmol/g的磁性高分子微球。 相似文献
4.
环氧基多孔磁性复合微球的制备及性质 总被引:1,自引:0,他引:1
以聚醚为致孔剂,通过悬浮聚合法制备了表面带有环氧基的多孔磁性复合微球。用红外光谱(FTIR)、扫描电子显微镜(SEM)、磁强计(VSM)、压汞法等对其进行了表征,考察了分散剂质量分数对多孔磁性微球性能的影响。结果表明,该微球粒径为35~50μm,表面有不规则孔道,w(Fe3O4)≈15.8%,饱和磁化强度8.98 emu/g。水相中w(PVA)由1.5%升至3%时,微球平均粒径由130μm变为40μm,而平均孔径亦由144 nm降为39 nm。 相似文献
5.
6.
7.
P(St-GMA-DVB)/Fe3O4高分子磁性微球的合成与表征 总被引:1,自引:0,他引:1
以FeCl3×6H2O和FeCl2×4H2O为原料,采用化学共沉淀法制备了Fe3O4油基磁流体,设计的合成工艺克服了合成磁流体过程中Fe3O4磁性粒子易团聚的缺点,合成了具有很好分散性和稳定性的磁流体,比饱和磁化强度达72.60 emu/g. 采用悬浮聚合方法合成了聚苯乙烯-甲基丙烯酸缩水甘油酯-二乙烯基苯[P(St-GMA-DVB)]高分子磁性微球,搅拌转速对磁性微球粒径影响大,磁性微球粒径在55~300 mm范围内,外形为具有单分散性的球形,表面环氧基团含量达17 mmol/g. 相似文献
8.
综述了磁性高分子微球的最新研究进展,并介绍了高分子磁性微球制备方法中比较经典的几种,并比较了他们各自的优势和不足。并对高分子磁性微球的研究方向的未来发展进行了展望。 相似文献
9.
10.
采用化学共沉淀法制备了油酸包覆的Fe3O4磁性纳米粒子,以此为核·采用分散聚合法制备了表面带有环氧基团的Fe3O4/聚甲基丙烯酸缩水甘油酯(PGMA)磁性复合微球,探讨了聚合工艺、聚合条件对甲基丙烯酸缩水甘油酯(GMA)利用效率的影响规律,并用傅立叶变换红外光谱仪(FTIR)、热重分析仪(TGA)、振动样品磁强计(VSM)和扫描电镜(SEM)等对磁性复合微球的结构、磁性能和包覆量进行了表征.采用盐酸一丙酮法测定了磁性复合微球表面环氧基的含量。结果表明,在优化的条件下。GMA利用效率高达61.26%。磁性复合微球具有良好的单分散性·粒径为1~2μm.具有超顺磁性.比饱和磁强度为17.12emu·g^-1。环氧基含量达3.5mmol·g^-1。 相似文献
11.
12.
一步聚合法合成多孔磁性高分子微球及其机理研究 总被引:1,自引:0,他引:1
在羰基铁粉存在下,将苯乙烯与甲基丙烯酸甲酯通过悬浮聚合方法制备了表面多孔的磁性高分子微球。采用SEM、FTIR及XRD等对样品进行了表征。研究表明,聚合形成的磁性高分子微球表面粘附着40 nm左右的聚合物粒子,这些粒子之间形成孔隙。具有两亲性和可接枝聚合的明胶分子促成了单体在羰基铁粉表面引发并聚合。 相似文献
13.
本文研究了苯乙烯、丙烯酸等单体在磁性氧化铁(E_((?)3)O_4)的醇/水分散体系中的聚合行为。为了改善磁性氧化铁粒子与苯乙烯单体间的亲合性,加入聚乙二醇作为分散剂和稳定剂,制备出粒径为30~1000μm的具有磁响应性的聚苯乙烯微球。研究了控制聚合区域的方法,考察了分散稳定剂、分散介质、引发剂种类和用量、反应时间等因素对聚合行为及微球形成的影响。 相似文献
14.
15.
以马来酸酐和2,6-二氨基吡啶反应得到的产物N-(6-氨基-2-吡啶基)马来酰胺酸作为功能基单体,与乙二醇二甲基丙烯酸酯(EGDMA)、聚乙二醇4000在引发剂偶氮二异丁腈(AIBN)存在下进行无皂乳液共聚合反应包裹磁性Fe3O4,制备了表面同时具有羧基和氨基的双官能化高分子复合磁性微球。采用扫描电镜、红外光谱等技术对所得材料进行了表征。考察了聚合温度、引发剂种类、反应时间、原料配比等参数对聚合物包裹磁性Fe3O4的影响。以AIBN为引发剂,Fe3O4、单体、交联剂比例为1︰1︰5,聚合反应时间6 h所得的复合磁性微粒具有较好的形貌、磁响应性能和94.3%的包裹率。 相似文献
16.
Polysulphones with cross-linkable pendant vinylbenzyl groups (PSF-VB) were prepared via chloromethylation of commercial polysulphones. The curing reactivity of PSF-VB was investigated by differential scanning calori-metry. Interpenetrating polymer networks (IPNs) were prepared based on bisphenol A diglycidyl ether (DGEBA) and PSF-VB, where DGEBA was cured by 4,4′-diaminodiphenyl sulphone and VB groups of PSF-VB were radically polymerized using dicumyl peroxide (DCP). Polysulphones having pendant benzyl groups (PSF-Bz) were also prepared and used as non-reactive modifiers. The fracture toughness (KIC) for the resulting epoxy/PSF-VB IPN increased by 65% with no loss of mechanical properties on 10wt% addition of PSF-VB (7·9mol% VB unit, MW 74000). Non-reactive PSF-Bz was less effective than PSF-VB. Although the PSF-Bz modified resin had a particulate structure, the morphologies of the PSF-VB/epoxy IPNs were not clear from scanning electron micrographs. Furthermore, the epoxy/PSF-VB IPNs had higher solvent resistance than the epoxy/PSF-Bz blends. Morphological behaviour, modification results and high solvent resistance of the cured epoxy/PSF-VB resins indicate that cross-linked PSF-VB and the epoxy network entangled fully in the presence of DCP. © of SCI. 相似文献
17.
以硝酸铁(Fe(NO3)3·9H2O)和氨水(NH3·H2O)为原料,以聚乙烯吡咯烷酮(PVP)为表面活性剂,采用沉淀法制备了α-Fe2O3纳米晶自组装的磁性微球.利用X射线衍射仪和扫描电镜对所得产物进行了表征分析,并在室温下测量其磁学性能.结果表明,所制备的磁性微球由α-Fe2O3纳米晶自组装而成,其粒径大小在0.9~1.3 μm范围.在室温下测试了微球的磁学性能,其剩余磁感应强度为0.31 emu/g,矫顽力为4100 Oe,表现出较强的铁磁性. 相似文献
18.
19.
以正硅酸乙酯(TEOS)作为硅前驱体,在表面活性剂十六烷基三甲基溴化铵(CTAB)的辅助作用下,采用原位聚合法制备介孔磁性复合碳球,考察了醇水比(V乙醇:V水)、表面活性剂CTAB用量和水热温度(HT)等合成条件对复合碳球的形貌、粒径和表面孔结构的影响,采用TEM、SEM、BET、VSM等对碳球进行表征分析。结果表明:醇水比和表面活性剂显著影响碳球的形貌和粒径大小,水热温度可改变碳球的表面孔结构。在V乙醇:V水=3:4、CTAB=0.6g、HT=100℃的优化条件下制备的介孔磁性复合碳球的比表面积为553m2/g,较硅前驱体引入前增大2.7倍,介孔孔容占比由18%增大到83%。同时,考察该材料对红霉素的吸附性能,饱和吸附量为255mg/g;用乙酸正丁酯对吸附后材料进行再生,五次循环再生后吸附量维持在初始吸附量的85%以上。 相似文献
20.
Fe_3O_4/P(St-CBA)核壳磁性复合微球的制备及性质 总被引:1,自引:0,他引:1
运用分散聚合法制备出Fe3O4 /P(St -CBA)核壳磁性复合微球。该微球粒径为 0 .0 75~0 .70 0 μm、w(Fe3O4 ) =0 .0 5 %~ 0 .90 % ,呈规整球型 ,表面光滑 ,在 0 .0 5T磁场中的磁响应性为3.0cm/min。制备微球的最佳条件为 :w(磁流体 ) =0 .5 %~ 3 .0 %、w(马来酸酐 ) =0 .0 %~2 .0 %、w(无水乙醇 ) =30 .0 %~ 70 .0 %。 相似文献