首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
润滑油白土补充精制吸附过程   总被引:2,自引:0,他引:2  
采用正交试验设计方法测定了润滑油经白土吸附后润滑油的色度与浊度,通过对正交试验结果的极差分析,得到了白土类型、用量、吸附方法、温度、吸附时间等对润滑油吸附效果影响的主次关系.正交试验结果表明白土用量和白土类型分别是影响白土吸附后润滑油的色度和浊度的主要因素.在此基础上通过单因素试验进一步研究了各参数对润滑油质量的影响规律.研究结果为白土吸附的工业生产提供了试验依据.  相似文献   

2.
白土精制工艺优化研究及工业应用   总被引:1,自引:0,他引:1  
卢振旭 《广东化工》2013,(22):51-53
文章对两种白土精制工艺进行了阐述,确定了"先加热后加白土"工艺精制的最佳温度;在实验室针对减二、减三分别采用两种工艺进行白土精制试验,结果表明,无论采用"先加热后加白土"新工艺或原工艺,白土精制油的理化性能都满足要求。本文还进行了工业装置试生产。  相似文献   

3.
欧阳平  张贤明 《应用化工》2019,(8):1858-1861
为探索粉煤灰吸附在废润滑油再生中的高附加值利用,单因素实验探讨影响粉煤灰吸附再生废油的主要因素,正交实验得到相对优化的粉煤灰吸附工艺条件。结果表明,该优化工艺条件为:搅拌时间60 min,吸附温度90℃,粉煤灰添加量12%,搅拌速率850 r/min。并与活性白土吸附处理废油进行对比实验,实验证明粉煤灰再生处理废油的效率与活性白土相近,可作为吸附剂用于废油的吸附再生。  相似文献   

4.
《应用化工》2022,(8):1858-1861
为探索粉煤灰吸附在废润滑油再生中的高附加值利用,单因素实验探讨影响粉煤灰吸附再生废油的主要因素,正交实验得到相对优化的粉煤灰吸附工艺条件。结果表明,该优化工艺条件为:搅拌时间60 min,吸附温度90℃,粉煤灰添加量12%,搅拌速率850 r/min。并与活性白土吸附处理废油进行对比实验,实验证明粉煤灰再生处理废油的效率与活性白土相近,可作为吸附剂用于废油的吸附再生。  相似文献   

5.
研究了米糠油脱磷脂及脱色方法,以提高脱磷脂、脱色的效果。采用正交试验法分别考察了多种因素对脱磷脂及脱色操作的影响,找到了最佳脱磷及脱色的工艺操作指标。实验结果表明,最佳脱胶工艺条件为:毛油温度为90℃,磷酸用量为油重的0.3%,水的用量为油重的6.0%,快速搅拌时间为40min,食盐用量为油重的1.5%。最佳脱色工艺条件:活性白土的量为油重的3%,油温为110℃,反应时间为30min,废白土的用量为油重的2%。  相似文献   

6.
对物理化学实验-活性炭吸附醋酸实验进行改进,探索影响实验因素,利用Design-expert8.0软件对实验条件进行优化。利用单因素实验考察温度、活性炭粒度大小、吸附时间、活化时间对吸附量的影响,考察改进前后的对比,确定最佳实验条件。温度升高,吸附能降低,搅拌效果比振荡效果更好,粒度越小,吸附能力越强,但是粒度过小,过滤速度慢,最终确定粒度大小40~60目、搅拌60 min吸附趋于平衡,80℃活化时间控制在120 min以上,实验效果最佳。此实验改进斱案仪器设备简单,操作简便,数据准确,值得在全院范围内进行推广。  相似文献   

7.
研究考察了活性白土、高岭土、活性炭3种脱色剂对酸催化橡胶籽油的脱色效果。从3种脱色剂脱色效果来看,活性白土是最佳的脱色剂。较佳脱色条件为:活性白土用量为橡胶籽油质量的7%、脱色温度80℃、脱色时间30 min、搅拌速度120 r/min,此条件下其对生物柴油脱色率为75.65%。  相似文献   

8.
曾一文  周国永  元德阐 《应用化工》2012,41(7):1165-1167,1171
用钛酸丁酯对重质碳酸钙粉体进行表面改性,考察了改性剂浓度、温度、时间、搅拌速度对吸油值、粘度、沉降体积的影响。结果表明,钛酸丁酯用量为2.0%,改性温度90℃,改性时间为30 min,搅拌速度为500 r/min时,改性效果最好,改性后的碳酸钙粉体吸油值、粘度和沉降体积均比改性前有明显降低。  相似文献   

9.
对亚麻以NaOH进行改性,对所制备的改性吸附剂的吸附条件进行研究。采用BBD设计找到其最优吸附条件,并研究了改性吸附剂对色度及COD的去除率。本文选取了改性剂浓度、吸附剂投加量、改性剂反应时间、吸附剂粒径、吸附时间、改性剂反应温度、吸附温度7个因素进行研究,在此基础上进行BBD实验,找出最优吸附条件:吸附剂过筛180目,吸附剂投加量0.0188 g,吸附时间21.6 min,该条件下色度的实际去除率为87.2%;同时测定了改性亚麻对COD的去除率为48.4%。  相似文献   

10.
5A分子筛对重整拔头油吸附分离工艺的研究   总被引:2,自引:0,他引:2  
在固定吸附床(高度1.2 m,D50 mm)上,研究以5A分子筛为吸附剂,采用吸附分离的工艺技术,对重整拔头油进行吸附分离,考察了温度、空速、吸附/脱附循环等因素对吸附分离工艺的影响,优化了吸附分离的工艺条件。吸附分离优化的操作条件为:操作温度220℃,拔头油气态空速为50 h~(-1),进料时间为25min,脱附气体(氮气)空速为50 h~(-1),中间油吹扫4min,脱附时间21 min。脱附油中正构烷烃的质量分数可以达到99%左右。重整拔头油吸余油的辛烷值得到了提高,可以作为良好的汽油调和组分。  相似文献   

11.
12.
Normal phase preparative and semi-preparative liquid chromatography were used to isolate fractions of varying polarity from corn, soybean and sunflowerseed oils. Reported here is the composition of one fraction, less polar than triglycerides, determined by isolating the individual ?peaks? of a semi-preparative separation using as starting material the mix of compounds obtained from a large scale separation. These peaks were then analyzed by high performance liquid chromatography (LC) gas chromatography (GC), mass-spectrometry (MS) with and without GC, in both electron impact (EI) and chemical ionization (CI) modes, and carbon-13 nuclear magnetic resonance (NMR) spectroscopy. Semi-quantitative data were obtained for many of the components found in these semi-preparative isolates including hydrocarbons, steryl esters, triterpenyl esters, phytyl esters and geranylgeranyl esters. The weight percent and composition of the preparative fraction differed substantially among the three oils. Corn oil had the greatest amount, at 1.25% of the starting oil, and was composed mostly of steryl and triterpenyl esters. Sunflowerseed oil, at 0.7%, and soybean oil, at 0.3%, showed greater variety in that branched chain esters were included with the steryl/triterpenyl distributions.  相似文献   

13.
14.
Recycle of heavy oil (>340 °C) to the retort, in order to crack/coke the oil to lighter fractions, was investigated as a means of producing shale oil of more desirable product slates. Conversion of heavy oil to light oil (<340 °C) by thermal cracking and coking in the absence of and during oil shale retorting was studied using the CSIRO BIRCOS retort. As expected, the conversion by thermal cracking increased as temperature increased, with most of the net oil loss in the form of gas. By contrast, the conversion by coking alone decreased as temperature increased, with coke representing all the net oil loss. Thermal cracking was found not to be a first-order reaction, by showing a reduced conversion of heavy oil with reduced concentration of oil vapour. Retorting Stuart oil shale with heavy oil feeding and simultaneous cracking and coking showed a conversion of 19.1 g per 100 g feed heavy oil to 10.9 g light oil, 2.2 g gas and 6.0 g coke, with a net oil loss of 3.8 g per 100 g shale oil produced. These data were used to generate a set of parameters for a mathematical model which simulated a heavy oil recycle loop.  相似文献   

15.
Preparation of laurel oil alkanolamide from laurel oil   总被引:1,自引:1,他引:1  
A low-temperature synthesis of laurel oil alkanolamides directly from laurel oil and ethanolamine was carried out in essentially quantitative yields. The ethanolamine/laurel oil molar ratio used was 10∶1. Even though amine served as a catalyst in the reaction, we used sodium methoxide at a ratio of 0.2–2% as a second catalyst. The reaction was complete in 1–9 h at room temperature. The identity of the amide was confirmed by IR and 13C NMR spectroscopy.  相似文献   

16.
World-wide use of sunflower oil is second only to soybean oil. Interest in domestic use as a premium salad oil is very recent. The high ratio of polyunsaturated-to-saturated fatty acids makes sunflower oil a premium salad oil. Sunflower oil, however, contains a small amount of high melting wax which must be removed to avoid settling problems. It is possible to produce a brilliant, dewaxed, deodorized sunflower oil with over a 100-hr cold test at 0 C. This quality oil can be produced by conventional caustic refining, dewaxing, bleaching and deodorization. A quality finished oil may also be produced by dewaxing and steam refining. This paper reviews various methods for processing sunflower oil from the crude state through the finished, dewaxed, deodorized salad oil. Presented at the ISF/AOCS Meeting, New York, April, 1980.  相似文献   

17.
18.
以乳化液稳定性为评价指标,研究了复配乳化剂、助乳化剂、助乳化剂与复配乳化剂质量比[m(C)m/(T)]及生物质裂解油在乳化液中质量分数的选择,并考察了HLB值、乳化温度、乳化时间、乳化方式、搅拌方式对乳化液稳定性的影响。实验结果表明:采用质量分数1.7%的T-85和乳化剂A的复配乳化剂,m(C)m/(T)为0.05的正辛醇为助乳化剂,在HLB值为8、乳化温度为20~40℃的条件下,将质量分数5%的生物质裂解油在柴油中高速乳化5m in,其中,乳化方式为T-85溶于生物质裂解油,乳化剂A溶于柴油,边搅拌柴油边加入生物质裂解油,再加入助乳化剂,乳化液的稳定性较好,稳定时间可达20 d。  相似文献   

19.
傅亮  杨基和  杜明育 《化工进展》2013,32(4):799-803
油浆经萃取分离得到以饱和烃为主的理想组分——抽余油。利用该油作为原料进行FCC反应,并与石蜡基重油从原料性质、反应工艺条件、产品分布及性质、再生剂性能等方面进行对比研究。结果表明:抽余油具有良好的FCC性能,其合适的反应条件为剂油比6.0、反应温度520 ℃、重时空速12.0 h?1;在各自最优工艺条件下,抽余油比重油液体收率增加1.69%,生焦率上升0.02%;在相同工艺条件即剂油比5.0、反应温度500 ℃、空速14.4 h?1,抽余油比重油液体收率增加0.19%,生焦率上升2.55%;与重油相比,抽余油FCC汽油辛烷值相当,FCC柴油十六烷值降低3.7,其再生剂失活程度较小。因此,抽余油完全可以替代重油作为FCC的原料,具有很好的工业应用前景。  相似文献   

20.
Conclusions Data obtained on the solubility of hydrogenated peanut oil in refined peanut oil and the behavior of the mixtures on cooling indicate that freedom from oil separation on storage is largely determined by the nature as well as the amount of solid crystals present in the oil. The results suggest that the best procedure for prevention of oil separation would involve shockchilling the molten mixture to produce the finely divided metastable crystalline modification followed by tempering at such a temperature as to permit transformation of the crystals into the more desirable higher-melting form without changing the finely divided state necessary for improved palatability. The data imply that under controlled conditions any amount of the high-melting modification of the hard fat incorporated in peanut oil above the solubility temperature in excess of 2% should produce a mixture free from oil separation under average storage conditions. The choice of the actual concentration of the hard fat, above the minimum amount, would depend upon the degree of plasticity desired. Ambient temperature to which the mixture is likely to be subjected will influence to a considerable extent the selection of the hard fat content. The information obtained is of fundamental importance in connection with the problem of oil separation in peanut butter. One of the laboratories of the Bureau of Agricultural and Industrial Chemistry, Agricultural Research Administration, U. S. Department of Agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号