首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining   总被引:3,自引:0,他引:3  
We report the design, fabrication, and successful demonstration of microelectromechanical variable optical attenuator (VOA) using an electrostatic microtorsion mirror (0.6 mm in diameter) combined with a fiber-optic collimator. The VOA operates at low voltages (dc 5 V or less) for large optical attenuation (40 dB, corresponding to mirror angle of 0.3/spl deg/) and a fast response time (5 ms or faster). The mirror made of a bulk-micromachined silicon-on-insulator wafer has been designed to be shock resistant up to 500 G without any mechanical failure. We also have suppressed temperature dependence of optical performance to be less than /spl plusmn/0.5 dB at 10-dB attenuation in the range of -5/spl deg/C-70/spl deg/C by mechanically decoupling the parasitic bimorph effect from the electrostatic operation.  相似文献   

2.
Extruded films prepared from blends of low-density polyethylene (LDPE) and random copolymer of ethylene and propylene (EP) with the T-die method were studied with respect to electrical properties and morphology. Comparisons with data on blown films are made. These blends are of interest as improved LDPE for making XLPE for insulated power cable. In the high temperature region (90/spl deg/C), a specimen with a slightly higher EP content had higher impulse breakdown strength than that with a lower EP content, but no improvement of DC breakdown strength by blending could be found. The improvement of impulse breakdown strength (90/spl deg/C) is explained in terms of morphological changes by blending such as the orientation of chains in a film and the size of spherulites on the assumption of the thermal breakdown. In comparison, a T-die film had higher impulse breakdown strength than that of a blown film for the same composition. The impulse breakdown strength also increased with the use of the higher density LDPE. In the current versus electric field characteristics at 30/spl deg/C, the blend polymer with EP content of 5-10% showed a transition from LDPE behavior at low field region to EP behavior at high field region. However, no appreciable difference in current behavior among the specimens was observed at 90/spl deg/C, which suggests an incompatibility between the two materials that exists at 30/spl deg/C but not at 90/spl deg/C.  相似文献   

3.
This paper provides data on four commercial tree retardant crosslinked polyethylene (TR-XLPE) and one cross-linked polyethylene (XLPE) insulated 15 kV cables supplied by three manufacturers. The cables have "super-smooth" conductor shields and "extra-clean" insulation and insulation shields. AC and impulse voltage breakdown and selected other characterization data are presented for cables that were aged immersed in room temperature water (15-30/spl deg/C) up to 24 months of a planned 48 months aging program. The five cables have high ac voltage breakdown strength, three of the TR-XLPE cables, actually increased in breakdown strength during aging. The one TR-XLPE cable that had the lowest ac voltage breakdown had vented trees at the insulation shield and high dissipation factor, which the other cables did not have. The impulse voltage breakdown strength of all cables decreased during aging; the cable with the lowest ac voltage breakdown also has the lowest impulse voltage breakdown. The dissimilar performance of the TR-XLPE cables and the excellent performance of the XLPE cable indicates evaluations at longer times are required to differentiate between modern TR-XLPE and XLPE insulated cables.  相似文献   

4.
The reversible breakdown walkout in the Si/sub 3/N/sub 4/ passivated AlGaAs/InGaAs pseudomorphic high-electron mobility transistors (PHEMTs) has been observed and investigated. Due to the double passivation processes, the fabricated PHEMTs demonstrated the reversible off-state breakdown walkout without changing device dc and RF performance significantly. This reversible breakdown behavior was induced by on-state stress. By repeating off-state and on-state stress, the breakdown voltages (V/sub B/s) eventually reached "stable region" or "reverse region" depending on the final stress process. A 2 V difference was observed between these two regions of breakdown.  相似文献   

5.
The 1.27-/spl mu/m InGaAs:Sb-GaAs-GaAsP vertical cavity surface emitting lasers (VCSELs) were grown by metalorganic chemical vapor deposition and exhibited excellent performance and temperature stability. The threshold current varies from 1.8 to 1.1 mA and the slope efficiency falls less than /spl sim/35% from 0.17 to 0.11 mW/mA as the temperature is raised from room temperature to 75/spl deg/C. The VCSELs continuously operate up to 105/spl deg/C with a slope efficiency of 0.023 mW/mA. With a bias current of only 5 mA, the 3-dB modulation frequency response was measured to be 8.36 GHz, which is appropriate for 10-Gb/s operation. The maximal bandwidth is estimated to be 10.7 GHz with modulation current efficiency factor of /spl sim/5.25GHz/(mA)/sup 1/2/. These VCSELs also demonstrate high-speed modulation up to 10 Gb/s from 25/spl deg/C to 70/spl deg/C. We also accumulated life test data up to 1000 h at 70/spl deg/C/10 mA.  相似文献   

6.
Outgassing from an electrode surface is regarded as a major factor leading to electrical breakdowns in vacuum. Recently oxidation treatment at 200/spl deg/C was reported as an effective means of reducing Ti outgassing. In this paper, we report our measurement and comparison of the electrical breakdown characteristics of Ti electrodes with different oxidation conditions (without oxidation, oxidation at 200/spl deg/C, oxidation at 450/spl deg/C). In addition, we analyzed electrode surfaces before and after breakdown experiments in situ with X-ray photoelectron spectroscopy (XPS). Before oxidation, we machined the electrode's surfaces to the roughness of 0.8 /spl mu/m Rmax with diamond turning. Breakdown experiments demonstrated that the breakdown field is highest at the first application of voltage to electrodes with oxidized at 200/spl deg/C. Before breakdown experiment, surface analysis revealed that all the sample electrodes had a large amount of carbon originating from the hydrocarbons of contaminants, and after the experiments, they revealed that the carbons had disappeared. To obtain breakdown characteristics of electrodes with smoother surfaces, we conducted experiments on electrodes with a surface roughness of 0.05 /spl mu/m Ra. For these electrodes, the breakdown field was higher at first breakdown; the repetitions required to achieve saturated breakdown fields were significantly fewer, and the amount of carbon on electrode surfaces before breakdown was less.  相似文献   

7.
Semicooled operation at 40/spl deg/C of electroabsorptive modulator integrated laser (EML) for intermediate reach communication has been demonstrated. Reproducible operation at the elevated temperature was achieved through a device parameter optimized based on the temperature dependence of the dc characteristics of EML and a design of multi-quantum-well structure providing both relevant output power and high-frequency bandwidth at 40/spl deg/C. Good eye pattern and near zero chirp with the average power over 0 dBm are obtained at 40/spl deg/C, with an estimated lifetime over 20 years.  相似文献   

8.
We report the device characteristics of stacked InAs-GaAs quantum dot (QD) lasers cladded by an Al/sub 0.4/Ga/sub 0.6/As layer grown at low temperature by metal-organic chemical vapor deposition. In the growth of quantum dot lasers, an emission wavelength shifts toward a shorter value due to the effect of postgrowth annealing on quantum dots. This blueshift can be suppressed when the annealing temperature is below 570/spl deg/C. We achieved 1.28-/spl mu/m continuous-wave lasing at room temperature of five layers stacked InAs-GaAs quantum dots embedded in an In/sub 0.13/Ga/sub 0.87/As strain-reducing layer whose p-cladding layer was grown at 560/spl deg/C. From the experiments and calculations of the gain spectra of fabricated quantum dot lasers, the observed lasing originates from the first excited state of stacked InAs quantum dots. We also discuss the device characteristics of fabricated quantum dot lasers at various growth temperatures of the p-cladding layer.  相似文献   

9.
Using two hexagonal samples of ice, polycrystalline and single-crystalline, the electrical treeing has been investigated under an applied impulse voltage. The crystallinity and temperature of the ice play an important role in the events of the treeing. In the single-crystalline ice, the tree in the samples at -25 /spl deg/C always progressed along the basal plane of the ice crystal, but at -196 /spl deg/C, it progressed along the c-axis. These distinctive patterns of the tree progression were attributed to the crystal axis dependence on the electrical conductivity and the relative permittivity at each temperature. The current accompanying the trees were detected by means of an electro-optic coupling with light emitting diodes and photodiodes. After the large current pulses which occur just after voltage application, small intermittent current pulses were visible in the wave tail of the applied voltage. These intermittent pulses appear to generate by the movement of accumulated charges after the formation of tree channels. The electrical breakdown strength of ice at -25 C was large for the electric field parallel to the c-axis of the single-crystalline ice.  相似文献   

10.
Recent progress in silicon carbide (SiC) material has made it feasible to build power devices of reasonable current density. This paper presents results including a comparison with state-of-the-art silicon diodes. Switching losses for two silicon diodes (a fast diode, 600 V, 50 A, 60 ns Trr), an ultrafast silicon diode (600 V, 50 A, 23 ns Trr), and a 4H-SiC diode (600 V, 50 A) are compared. The effect of diode reverse recovery on the turn-on losses of a fast insulated gate bipolar transistor (IGBT) are studied both at room temperature and at 150 /spl deg/C. At room temperature, SiC diodes allow a reduction of IGBT turn-on losses by 25% compared to ultrafast silicon diodes and by 70% compared to fast silicon diodes. At 150 /spl deg/C junction temperature, SiC diodes allow turn-on loss reductions of 35% and 85% compared to ultrafast and fast silicon diodes, respectively. The silicon and SiC diodes are used in a boost converter with the IGBT to assess the overall effect of SiC diodes on the converter characteristics. Efficiency measurements at light load (100 W) and full load (500 W) are reported. Although SiC diodes exhibit very low switching losses, their high conduction losses due to the high forward drop dominate the overall losses, hence reducing the overall efficiency. Since this is an ongoing development, it is expected that future prototypes will have improved forward characteristics.  相似文献   

11.
An approach using interdigitated capacitors for electrical characterization of CYCLOTENE, a spin-on low-k benzocyclobutene (BCB)-based polymer is introduced and the effect of moisture uptake is investigated. The dielectric constant of CYCLOTENE is extracted from capacitance measurements with a systematic error less than 0.1%, giving an average value of 2.49 with a standard deviation of 1.5%. The dielectric constant increases by 1.2% after a humidity stress of 85% RH at 85/spl deg/C. The I-V characteristics of CYCLOTENE show a dependency of breakdown strength and leakage current on the geometrical dimensions of the device under test. A breakdown strength of 225V//spl mu/m and 320 V//spl mu/m for 2-/spl mu/m and 3-/spl mu/m finger spacing, respectively, and a leakage current of a few to tens of pA are measured. The I-V characteristics degrade drastically after the humidity stress, showing a breakdown strength of 100 V//spl mu/m and 180 V//spl mu/m for 2-/spl mu/m and 3-/spl mu/m finger spacing, respectively, and a maximum increase in the leakage current as large as one order of magnitude. The maximum performance and long-term reliability of an electric micromachine are adversely affected by the degradation of the breakdown voltage and the leakage current after moisture absorption. It is expected, however, that the electrical efficiency is improved using BCB-based polymers with negligible dependency on moisture absorption.  相似文献   

12.
By sequential use of the isothermal charging, the isothermal discharging, the final thermally stimulated discharge current and the final isothermal discharging current techniques, the charge dynamics in highly insulating materials may be investigated. The method is demonstrated for polyethylene terephthalate. The injected charge for a field of 20 MV m/sup -/1 and polarization temperatures up to 110/spl deg/C is almost totally trapped in the material and is released during the heating of the sample at 180/spl deg/C for a sufficiently long time. A significant current at high temperatures, about 90/spl deg/C above the poling temperature, was observed proving that it originates from charge detrapping. The final thermally stimulated discharge current peaks shift to higher temperature when the polarization temperature increases, and are characterized by activation energies in the range from 1.03 to 1.56 eV. They allowed the identification of the glass transition around 114/spl deg/C. The relaxation time of the trapped charge, at 180/spl deg/C, was determined to be about 3780 s, explaining the very good stability of trapped charge.  相似文献   

13.
The temperature-dependent characteristics of an InGaP/InGaAs/GaAs heterostructure field-effect transistor (HFET), using the (NH/sub 4/)/sub 2/S/sub x/ solution to form the InGaP surface passivation, are studied and demonstrated. The sulfur-passivated device shows significantly improved dc and RF performances over a wide temperature range (300-510 K). With a 1/spl times/100-/spl mu/m/sup 2/ gate-dimension HFET by (NH/sub 4/)/sub 2/S/sub x/ treatment, the considerably improved thermal stability over dc performances including lower temperature variation coefficients on the turn-on voltage (-1.23 mV/K), the gate-drain breakdown voltage (-0.05 mV/K), the gate leakage current (1.04 /spl mu/A/mm/spl middot/K), the threshold voltage (-1.139 mV/K), and the drain-saturation-current operating regimes (-3.11/spl times/10/sup -4//K) are obtained as the temperature is increased from 300 to 510 K. In addition, for RF characteristics, the sulfur-passivated device also shows a low degradation rate on drain-saturation-current operating regimes (-3.29/spl times/10/sup -4//K) as the temperature is increased from 300 to 400 K. These advantages provide the promise for high-speed high-frequency high-temperature electronics applications.  相似文献   

14.
We describe the growth, material characterization, and device characterization of InP-GaInP quantum-dot lasers for operation in the wavelength range 690-750 nm. We show that the growth conditions have a major influence on the form of the gain spectrum. Relatively flat gain can be achieved over a spectral width of 90 nm at 300 K using samples containing a bimodal distribution of dot sizes, or narrower gain spectra at shorter wavelength can be achieved by suppressing the bimodal distribution by using (211)B substrates. Optimization of samples grown on substrates with the growth surface of (100) misorientated by 10/spl deg/ toward [111] results in laser operation between 729 and 741 nm and with a room temperature threshold current density as low as 190 A/spl middot/cm/sup -2/ for a 2000-/spl mu/m-long device with uncoated facets.  相似文献   

15.
Using a recently developed procedure combining isothermal and nonisothermal current measurements space charge trapping and transport in LDPE was successfully studied. Unaged, thermally and electrically aged samples were investigated. The samples were conditioned before each measurement in order to obtain reproducible results. In the nonisothermal measurements appeared a broad peak (40/spl deg/C to 50/spl deg/C) that was possible to decompose into two or three peaks (35, 45 and 65/spl deg/C). At even higher temperature another peak was sometimes present (85/spl deg/C) depending on the prior sample conditioning. The space charge is trapped near the surface in deep traps (maximum depth of /spl ap/15 /spl mu/m). Relaxation times, mobilities and activation energies have been calculated for different charging/discharging conditions. For unaged samples the reproducibility of the results was poor while for the aged polyethylene it was quite good, meaning that aging helps conditioning. In the electrically aged LDPE there is a decrease of conductivity and the broad peak of the nonisothermal spectra shows a slight shift towards higher temperatures when compared with the data found in the thermally aged polymer.  相似文献   

16.
The outstanding space charge storage stability of porous polytetrafluoroethylene (PTFE) film electrets is studied by isothermal surface potential decay measurements and open-circuit thermally stimulated discharge (TSD) experiments after corona charging at room and elevated temperatures, or corona charging at RT and then aging at different temperatures. Charge storage properties of porous PTFE, nonporous PTFE (Teflon/spl reg/ PTFE) and nonporous FEP (Teflon/spl reg/ FEP) electrets are compared. The results show that porous PTFE has the best charge storage stability of organic materials for both negative and positive charges, especially at high temperatures. The structure of porous PTFE, investigated by a scanning electron microscope (SEM), is important for understanding the electret properties of this material. Charge dynamics, including the influence of environmental humidity and temperature on charge stability and shift of mean charge depth, and the kinetics of detrapped charges for the porous PTFE film electrets were also investigated by means of isothermal surface potential decay measurements and analysis of the TSD current spectra in combination with the heat pulse technique. It is found that from about RT to 200/spl deg/C slow retrapping plays a dominant role; from about 200/spl deg/C to 300/spl deg/C fast retrapping controls the transport.  相似文献   

17.
This paper reviews long-term test results obtained from a series of tests on glass-silicon (Si) hermetically sealed packages. Results are presented from 1) a 9.9-year ongoing room temperature phosphate-buffered saline (PBS) soak test of four packages; 2) accelerated soak tests in high temperature saline of 28 samples resulting in an extrapolated mean-time-to-failure (MTTF) at 37/spl deg/C of 177 years; 3) a 2.7-year in vitro 97/spl deg/C PBS soak test of a single package; and 4) in situ hermeticity and biocompatibility tests from 12 packages implanted in four guinea pigs-three packages implanted in two guinea pigs (each) for 1 month and another two guinea pigs for 20 and 22 months. All of the packages remained hermetically sealed over the lifetime of the implant. A detailed histological report of the implants is provided suggesting that they elicit no profound adverse reaction from the body.  相似文献   

18.
Si ion implantation into p-type GaN followed by rapid thermal annealing (RTA) in N/sub 2/ has been performed. X-ray diffraction analyses indicate that ion-implanted damage remains even with 1050/spl deg/C, 60 s RTA. By varying implantation and postimplantation annealing conditions, we could convert carrier concentration from p-type 3 /spl times/ 10/sup 17/ cm/sup -3/ into n-type 2 /spl times/ 10/sup 17/ cm/sup -3/ /spl sim/2 /spl times/ 10/sup 19/ cm/sup -3/. It was found that typical activation energies of Si implants in p-GaN are lower than 10 meV. Such activation energies are smaller than those observed from epitaxially grown Si-doped GaN films. A deep donor level with activation energy of 60 meV was also found from some samples. Photoluminescence studies show that the peak appears at 372 nm might be related to implantation-induced defects. It was also found that a green emission band could be observed from Si-implanted GaN. It was shown that such a green emission is related to the yellow band observed from epitaxially grown Si-doped GaN. The transport properties of these Si-implanted samples were also studied.  相似文献   

19.
This paper investigated the reliability of semiconductor 1.3-/spl mu/m multiquantum-well (MQW) Fabry-Perot laser diodes (LDs) in a quarter 2-in wafer level that are measured to have uniform threshold currents, slope efficiencies, and wavelengths within 4% of the maximum deviation. By performing the accelerated aging test under a constant optical power of 3 mW at 85/spl deg/C for 2100 h, the lifetime of the fabricated optoelectronic devices was estimated, where the failure rate was matched on the fitted line of the lognormal distribution model resulting in the mean-time-to-failure (MTTF) of 2/spl times/10/sup 6/ h operating at room temperature.  相似文献   

20.
Quantum-dot gain material fabricated by self-organized epitaxial growth on GaAs substrates is used for the realization of 980-nm and 1.3-/spl mu/m single-mode distributed feedback (DFB) lasers and edge-emitting microlasers. Quantum-dot specific properties such as low-threshold current, broad gain spectrum, and low-temperature sensitivity could be demonstrated on ridge waveguide and DFB lasers in comparison to quantum-well-based devices. 980-nm DFB lasers exhibit stable single-mode behavior from 20/spl deg/C up to 214/spl deg/C with threshold currents < 15 mA (1-mm cavity length). Utilizing the low-bandgap absorption of quantum-dot material miniaturized monolithically integrable edge-emitting lasers could be realized by deeply etched Bragg mirrors with cavity lengths down to 12 /spl mu/m. A minimum threshold current of 1.2 mA and a continuous-wave (CW) output power of >1 mW was obtained for 30-/spl mu/m cavity length. Low-threshold currents of 4.4 mA could be obtained for 1.3-/spl mu/m emitting 400-/spl mu/m-long high-reflection coated ridge waveguide lasers. DFB lasers made from this material by laterally complex coupled feedback gratings show stable CW single-mode emission up to 80/spl deg/C with sidemode suppression ratios exceeding 40 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号