首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The present study was carried out to assess the weldability properties of ASTM A 537 Cl. 1 pressure-vessel quality steel using the shielded metal arc welding (SMAW) process. Implant and elastic restraint cracking (ERC) tests were conducted under different welding conditions to determine the cold cracking susceptibility of the steel. The static fatigue limit values determined for the implant test indicate adequate resistance to cold cracking even with unbaked electrodes. The ERC test, however, established the necessity to rebake the electrodes before use. Lamellar tearing tests carried out using full-thickness plates under three welding conditions showed no incidence of lamellar tearing upon visual examination, ultrasonic inspection, and four-section macroexamination. Lamellar tearing tests were repeated using machined plates, such that the central segregated band located at the midthickness of the plate corresponded to the heat-affected zone (HAZ) of the weld. Only in one (no rebake, heat input: 14.2 kj cm-1, weld restraint load: 42 kg mm-2) of the eight samples tested was lamellar tearing observed. This was probably accentuated due to the combined effects of the presence of localized pockets of a hard phase (bainite) and a high hydrogen level (unbaked electrodes) in the weld joint. Optimal welding conditions were formulated based on the above tests. The weld joint was subjected to extensive tests and found to exhibit excellent strength (tensile strength: 56.8 kg mm-2, or 557 MPa), and low temperature impact toughness (7.4 and 4.5 kg-m at-20 °C for weld metal, WM, and HAZ) properties. Crack tip opening displacement tests carried out for the WM and HAZ resulted in δm values 0.36 and 0.27 mm, respectively, which indicates adequate resistance to brittle fracture.  相似文献   

2.
High strength, quench and tempered (Q&T) plates having yield strength of a minimum of 670 MPa and conforming to SA 517 Gr. F specification were successfully developed at Rourkela Steel Plant in plates up to 40 mm thickness. The plates are used extensively for the fabrication of impellers, penstocks, excavators, dumpers, and raw material handling devices, where welding is an important processing step. SA 517 Gr. F plates, characterized by a relatively high carbon equivalent (CE: ∼0.6) and alloyed with Ni, Cr, Mo, Cu, and V, are susceptible to a crack-sensitive microstructure and cold cracking during welding. In view of the above, the present study investigated the weldability properties of 20 mm thick plates using the shielded metal arc welding (SMAW) process. Implant and elastic restraint cracking (ERC) tests were carried out to assess the cold cracking resistance of the weld joint under different welding conditions. Preheat of 100 °C, partial or full rebake, and a heat input of 14.9 to 15.4 KJ/cm resulted in static fatigue limit (SFL) values well in excess of the minimum specified yield strength (MSYS) of 670 MPa and a critical restraint intensity (K cr) value of 34,650 MPa, indicating adequate cold cracking resistance. Lamellar tear tests conducted using full thickness plates at heat input levels ranging from 9.7 to 14.4 KJ/cm and weld restraint loads (WRL) of 510 to 685 MPa showed no incidence of lamellar tear upon visual, ultrasonic, and four-section macroexamination. The weld joint, based on optimized welding parameters, exhibited adequate tensile strength (812.4 MPa) and low temperature impact toughness 88.3 and 63.4 J (9.2 and 6.6 kg-m) at −40 °C for weld metal (WM), and heat-affected zone (HAZ) properties, respectively. The crack tip opening displacement (CTOD) values of WM and HAZ (0.40 and 0.36 mm, respectively) were superior to that of the parent metal (0.29 mm), indicating adequate resistance of weld joint to brittle fracture. It was concluded that the weld joint conforms to the requirements of SA 517 Gr. F specification and ensures a high integrity of the fabricated products.  相似文献   

3.
Abstract

A low transformation temperature (LTT) welding consumable has been developed to prevent cold cracking in high strength steel welded joints without preheating. In the LTT welded joint, the residual tensile stress is reduced by martensitic expansion of weld metal formed by the LTT consumable. In the weld cracking tests, cold cracking in the LTT weld metal is successfully prevented under high restraint conditions, but cold cracking occurs at very low joint restraint strength in case the weld metal is fully martensitic. Chemical compositions of the consumable are designed to retain austenite in martensite in the newly developed weld metal to absorb the diffusible hydrogen into the austenite to prevent cold cracking. In the newly developed LTT weld metal, cold cracking is almost fully suppressed without preheating under every joint restraint condition.  相似文献   

4.
Abstract

For friction stir welding (FSW) of advanced high strength steel (AHSS) sheets with tensile strength grades between 590 and 1180?N?mm?2, the appropriate welding condition range and the influence of welding conditions on microstructures and mechanical properties of the welds were investigated. The appropriate welding conditions to avoid defects such as the incomplete consolidation at the bottom of the weld were obtained for the steel sheets up to 1180?N?mm?2 grade. The higher tool rotation speed evidently resulted in the larger volume fraction of martensite and higher hardness in the stir zone (SZ), attributed to an increase in the peak temperature of its thermal cycle. The tensile strength of the weld joint was as high as that of the base metal for the steels up to 980?N?mm?2 grade, but slightly lower than that of the base metal for the steel of 1180?N?mm?2 grade due to the heat affected zone (HAZ) softening.  相似文献   

5.
A517Q齿条钢的焊接性   总被引:1,自引:0,他引:1       下载免费PDF全文
谢云 《焊接学报》2015,36(5):104-108
通过斜Y坡口焊接裂纹试验、焊接热影响区最高硬度试验和焊接接头力学性能试验,系统地研究了A517Q齿条钢的焊接性. 结果表明,在拘束焊接时,A517Q齿条钢的焊接冷裂纹敏感性随钢板厚度由30 mm增大至60 mm而增大;提高预热温度有助于降低该钢的焊接冷裂倾向和热影响区的淬硬程度. 177.8 mm厚A517Q齿条钢板的焊接接头具有高强度和高韧性,能够满足使用性能要求;焊接热影响区的显微组织以低碳板条马氏体和板条贝氏体为主,该区硬度明显高出焊缝区和母材区,淬硬倾向较大,存在一定的冷裂风险.  相似文献   

6.
Magnesium alloy AZ31B and pure copper T2 were lapped and joined by cold metal transfer (CMT) welding–brazing method by AZ61A magnesium alloy wire with a 1·2 mm diameter. Results indicated that a satisfied Mg/Cu CMT welding–brazing joint was obtained in the stable welding processes with no spatter. The joint was composed of Mg–Mg welding joint formed between the Mg weld metal and the Mg base metal, and Mg–Cu brazing joint formed between the Mg weld metal and the local molten Cu base metal. The microstructure and the intermetallic compound (IMC) distribution were inspected and analysed in detail. The interfacial reaction layers of the brazing joint consisted of Mg2Cu, Al6Cu4Mg5, MgCu2 and Mg17Al12 IMCs. The tensile shear strength of the Mg/Cu CMT welding–brazing joint could reach 172·5 N mm?1. In addition, two different fracture modes were observed: at the fusion zone and at the brazing interface.  相似文献   

7.
Summary

The purpose of this paper is to clarify welded joint performance, especially the impact properties of the weld metal produced by heavy‐current electroslag welding (ESW) and submerged‐arc welding (SAW), with special reference to the high heat input welding processes generally applied in the fabrication of four‐sided thick‐plate box columns. Two types of SM490A 40 mm thick plates were used in the tests. The results obtained may be summarised as follows:
  1. The impact properties of the high heat input weld metal produced under standard conditions (thickness of 40 mm) are generally such that ESW has a lower absorbed energy value (vE value) than SAW.

  2. The impact value of ESW high heat input weld metal is non‐uniform, and distinctive impact properties are found. That is to say, the vE value of the weld metal core is lower than that of the weld metal rim.

  3. ESW weld metal macrostructures have a non‐uniform morphology in both the core and rim. That is to say, a fine‐grained columnar zone is generated in the core and a coarse‐grained columnar zone in the rim.

  4. The results presented above in (1) and (2) suggest that the fine‐grained columnar zone in the ESW weld metal core has a low absorbed energy value (vE value) and that the coarse‐grained columnar zone in the rim conversely has a high one. This conflicts with what is conventionally stated about effects of grain size in otherwise identical microstructures, i.e. that the vE value decreases with an increasing grain size.

  5. The vE value of ESW weld metal tends to decrease in relation to the welding heat input Q. That is to say, it tends to have a low value at Q > 30.0 kJ/mm (up to around 80.0 kJ/mm).

  6. The analyses of the gas composition and five principal elements of the ESW weld metal at different Q values suggest that there is little change in relation to any heat input change. This suggests that the decrease in the vE value in relation to the welding heat input Q is not due to a change in the weld metal composition.

  相似文献   

8.
Abstract

A series of welds have been fabricated in high strength low alloy steel (HSLA100) plate by gas metal arc welding at heat inputs of 1.0, 1.6 and 2.2 kJ mm-1. Slices from the welds were then polished and the macrostructure was observed. Hardness maps were then determined over the entire weld zone, including the heat affected zone and the base plate. Correlations were then made between the hardness maps and the macrostructure. A bead on plate weld was made using the same heat inputs and was used to determine the temperature regimes in the weld as well as thermal profiles of the weld region. Relationships showing good correlations were observed between the various microstructures, the macrostructure, the calculated thermal profiles, and the hardness values.  相似文献   

9.
采用气体保护焊对试验钢CP800分别进行对接、斜Y、T型(角接)、CTS(搭接)焊接,测试分析不同焊接接头形式下的宏观形貌、微观组织和性能的变化,以研究CP800钢的可焊性和冷裂纹敏感性。实验结果表明:试验钢适用于各种焊接形式下的汽车结构件,具有很低的焊缝冷裂纹敏感性。焊接热影响区的组织为粒状铁素体、贝氏体以及少量的板条贝氏体,分布均匀,焊缝熔合良好。4种不同焊接方式下的焊缝硬度分布一致,最高硬度值为320 HV,小于350 HV。斜Y坡口对接接头处的母材、热影响区以及熔合区的冲击性能均大于23 J,其断口形貌均为韧窝形状。  相似文献   

10.
The 5?mm thick Al–Mg–Si alloy was self-reacting friction stir welded using the specially designed tool at a constant rotation speed of 400?rev?min?1 with various welding speeds. Defect-free welds were successfully obtained with welding speeds ranging from 150 to 350?mm?min?1, while pore defects were formed in the weld nugget zone (WNZ) at a welding speed of 450?mm?min?1. Band patterns were observed at the advancing side of WNZ. Grain size and distribution of the precipitated phase in different regions of the joints varied depending on the welding speed. The hardness of the weld was obviously lower than that of the base metal, and the lowest hardness location was in the heat affected zone (HAZ). Results of transverse tensile tests indicated that the defective joint fractured in the WNZ with the lowest tensile strength, while the fracture location of the defect-free joints changed to the HAZ.  相似文献   

11.
Abstract

In welding of high nitrogen steel (HNS), it is essential to control the nitrogen content and porosity in the weld metal. In this paper, the influence of shielding gas composition and heat input on the nitrogen content and porosity in the weld metal of HNS was investigated by gas tungsten arc welding. The experimental results indicate that the weld nitrogen content increases as N2 in the shielding gas is increased in the same heat input of welding. The weld nitrogen content decreases with increasing the heat input for pure argon used as a shielding gas, whereas it increases with increasing the heat input for the shielding gas including some nitrogen. The nitrogen pore can be avoided when the nitrogen content in the shielding gas is <4% in the heat input range of 528–2340 J mm–1.  相似文献   

12.
高速列车用厚板铝合金CMT焊接工艺   总被引:1,自引:1,他引:0       下载免费PDF全文
路浩 《焊接学报》2015,36(4):75-78
针对低热输入、高质量焊接技术的需求,研究厚板铝合金多层多道冷金属过渡技术(cold matal transter,CMT)焊接工艺和脉冲MIG焊接工艺的区别,对CMT焊接和脉冲MIG焊接进行热循环曲线测量,焊接接头拉伸、弯曲、硬度等常规力学性能试验和接头微观组织分析.结果表明,铝合金厚板焊接时相对脉冲MIG焊接方法,CMT方法焊接温度场低,焊接接头软化明显减弱,冲击韧性得到提高,厚板多层多道焊接接头组织明显改善,晶粒明显细化.试验表明CMT焊接方法可获得相对脉冲焊接更加优良的铝合金焊接接头.  相似文献   

13.
The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.  相似文献   

14.
Extension of sensitized zone (SZ) in welded AISI 304 stainless steel was determined by two non-destructive electrochemical tests: double loop electrochemical potentiokinetic reactivation technique (DLEPR) and local electrochemical impedance spectroscopy (LEIS). Welding was carried out using the shielded metal arc with two selected welding energies: the first one (0.7 kJ mm−1) does not promote the sensitization of the 304 steel and it constitutes the reference sample and the second one (2.2 kJ mm−1) which leads to the precipitation of chromium carbides in the grain boundaries after the welding process. The non-destructive DLEPR and LEIS tests allowed the length of the SZ to be determined and a good agreement between the two techniques and the microstructure of the two welded samples was shown. The presence of an inductive loop on the local impedance diagrams seems to reflect a galvanic coupling between the weld string (anode) and the welded stainless steel plates (cathode) which will be very prejudicial to a good corrosion resistance of the welded system. The results showed that the two electrochemical tests could be applied in practical cases in industrial field.  相似文献   

15.
紫铜厚板GTAW热裂纹形成原因分析   总被引:4,自引:2,他引:2  
热裂纹是紫铜厚板气体保护焊接所面临的的主要问题,为了找出在紫铜焊接热裂纹中起主要作用的因素,研究了采用HS201焊丝进行紫铜厚板钨极氦气体保护焊接(GTAW)的热裂纹倾向问题,通过在空气中和充氩密闭环境中的刚性拘束裂纹试验的裂纹率,评定了热裂纹敏感性,指出了热裂纹的产生原因,结合填充材料、熔覆金属的高温延性,提出了热裂纹抑制方法.结果表明,热裂纹的形成原因是焊丝脱氧能力较差,导致氧侵入焊缝形成的Cu元素和铜的低熔共晶,在一次结晶的柱状晶晶界处偏聚,低熔共晶在应力下开裂.  相似文献   

16.
试验采用YHG-1200TH型移动式钢轨闪光焊机,焊接武钢60 kg/m U71Mn G热轧态钢轨.通过观察分析焊接曲线中闪平、脉动闪光、加速闪光与顶锻保压各阶段电流、电压、钢轨位移、压力等因素,结合接头落锤试验情况,调整并优选出合理工艺参数;分析焊接热输入与顶锻量间的搭配关系及接头抗落锤次数,观察断口与接头显微组织.结果表明,试验用钢轨闪光焊接热输入在11.5~12.5 MJ之间且顶锻量在15~16 mm之间时,接头抗落锤情况较集中,质量稳定性好;合理工艺参数焊接且经落锤检验合格的接头断口无明显缺陷,焊缝及热影响区组织为珠光体和少量铁素体,未见马氏体、贝氏体组织或其它缺陷.  相似文献   

17.
The structure and mechanical characteristics of a weld joint of 10Kh9K3V2MFBR steel (0.097 C, 0.17.Si, 0.54 Mn, 8.75 Cr, 0.21 Ni, 0.51 Mo, 0.07 Nb, 0.23 V, 0.004 N, 0.003 B, 1.6 W, 0.15 Cu, and Fe for balance, wt %) have been studied; the joint was produced by hand welding in an argon atmosphere using 03Kh20N45M7G6B welding wire (0.3 C, 20 Cr, 45 Ni, 7 Mo, 6 Mn, and 1 Nb, wt %). The weld joint is divided into the zone of the base metal, a thermal effect zone, which consists of zones that contain fine and coarse original austenitic grains, and the zone of seam metal. It has been shown that the weld joint of 10Kh9K3V2MFBR steel possesses high strength characteristics at the room temperature under static loading and a satisfactorily impact toughness, which has the minimum value of 30 J/cm2 in the zone of the seam metal and does not depend on the temperature. With a decrease in the temperature from the room temperature to 253 K, a ductile–brittle transition occurs in the thermal effect zone. Creep tests carried out at the temperature of 923 K have shown that the long-term strength of the weld seam is lower than that of the base material in the entire stress range being tested. At stresses of 140 MPa or higher, the acceleration of creep in the weld seam is observed, while at low stresses of about 120 MPa, the rates of creep in the weld seam and in the base metal remain similar until the transition to the stage of accelerated fracture occurs. The difference in the values of the long-term strength is due to premature fracture, which occurs in the thermal effect zone with the finegrained structure.  相似文献   

18.
采用电子束焊,对空冷器管箱Incoloy 825镍基高温合金进行对接焊试验. 通过对焊接接头的组织观察,并结合拉伸力学性能以及接头的冲击韧性等试验,分析镍基高温合金电子束焊接头的组织和力学性能. 结果表明, 采用电子束焊焊接镍基高温合金可以得到良好的焊接接头,焊缝区组织由大片等轴晶和少量柱状晶组成;焊缝区没有出现明显的元素烧损现象;焊缝、热影响区硬度达到母材硬度值;焊缝接头抗拉强度达到600 MPa,接近母材抗拉强度,接头断裂形式为韧性断裂;焊缝和热影响区的冲击吸收能量高于母材区,其中焊缝区的冲击吸收能量达到了262 J,冲击断口形貌为韧窝状.  相似文献   

19.
采用CO2激光对抗拉强度为600MPa,厚度1.4mm的DP钢进行焊接.研究焊接速度对焊缝外观和截面成形的影响、接头的组织特点、硬度、强度和成形能力.结果表明,激光功率相同,焊接速度较低时焊缝易产生气孔,焊接速度较高时易发生飞溅;焊接速度对焊缝熔深及熔宽也有影响.焊缝区组织主要由马氏体构成,从焊缝、焊接热影响区到母材,组织中马氏体含量下降,接头的最高硬度出现在焊缝或热影响区.在平行于焊缝方向,焊接接头的抗拉强度高于母材,垂直于焊缝方向,接头的抗拉强度与母材相当.由于焊缝出现马氏体组织,接头的塑性和韧性降低,板材的冲压成形能力下降.  相似文献   

20.
30Cr13为马氏体不锈钢,含碳量较高,同质焊缝及热影响区焊态下为马氏体组织,有较大冷裂倾向。通过对12 mm厚30Cr13钢板的焊接结构进行焊接工艺试验。结果表明,在选用奥氏体不锈钢焊接材料的条件下,严格控制焊接工艺,通过焊前预热及焊后消除应力热处理可以获得良好的焊接接头力学性能,满足相关标准及设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号