首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new microbial isolate,Flavobacterium sp. strain DS5, converts linoleic acid into 10-hydroxy-12(Z)-octadecenoic acid (10-HOA) with 55% yield. The product was characterized by gas chromatography (GC), GC/mass spectrometry, nuclear magnetic resonance and Fourier transform infrared spectroscopy. The specific optical rotation of 10-HOA is [α] D 24 =−5.58 (methanol). The optimum time, pH and temperature for the production of 10-HOA were 36h, 7.5 and 20–35°C, respectively. The enzyme(s) that converts linoleic acid to 10-HOA is soluble and located intracellulary in strain DS5. Two minor products, 10-methoxy-12-octade-cenoic acid and 10-keto-12-octadecenoic acid, were also identified. 10-HOA was further metabolized by strain DS5. Among the unsaturated fatty acids studied, the order of reactivity for the DS5 enzyme(s) is oleic>palmitoleic> linoleic>linolenic>γ-linolenic>myristoleic acid.  相似文献   

2.
Stationary-phase cells of a corynebacterium (FUI-2) and a bacillus (NRRL B-14864) isolate, when grown aerobically in 1% YE medium at 25°C, converted 12-hydroxystearic acid to a major compound, 5-n-hexyl-tetrahydrofuran-2-acetic acid, and other intermediate and minor compounds (6-hydroxydodecanoic acid, 4-hydroxydecanoic acid, 4-ketodecanoic acid and γ-decanolactone). The yields of 5-n-hexyl-tetrahydrofuran-2-acetic acid, 4-hydroxydecanoic acid, and γ-decanolactone, byBacillus lentus NRRL B-14864 were 43%, 18% and 5%, respectively, after 2.5 d of incubation. Presented in part at the 3rd Annual Student Research Conference, Board of Governors Universities, University Park, Illinois, April 1992; in part at the 92nd American Society for Microbiology General Meeting, New Orleans, Louisiana, May 1992; and in part at the 35th West Central States Biochemistry Conference Annual Meeting, Manhattan, Kansas, October 1992.  相似文献   

3.
13C nuclear magnetic resonance (NMR) spectroscopic analysis of the whole oil (triacylglycerols) ofBiota orientalis seeds confirms the presence of oleate [18:1(9Z)], linoleate [18:2(9Z, 12Z)], linolenate [18:3((9Z, 12Z, 15Z)], 20:3 (5Z, 11Z, 14Z), 20:4(5Z, 11Z, 14Z, 17Z), and saturated fatty acids in the acyl groups by comparing the observed carbon shifts with previously established shift data for model triacylglycerols. This technique shows that the saturated, 20:3 and 20:4 fatty acids are distributed mainly in the α-acyl positions, whereas oleate, linoleate, and linolenate are randomly acylated to the α- and β-positions of the glycerol “backbone”. Stereospecific hydrolysis of theBiota oil with pancreatic lipase, followed by chromatographic analysis of fatty esters, reveals the presence of trace amounts of 16:0(0.7%), 18:0(0.5%), 20:3 (0.4%), and 20:4 (1.3%) in the β-position of the glycerol “backbone”, which are undetectable by13C NMR technique on the whole oil. Semiquantitative assessment of the13C NMR signal intensities gives the relative percentages of the fatty acid distribution as: saturated 16:0, 18:0 (12.0% α-acyl), oleate (7.7% α-acyl 8.7% β-acyl), total linoleate and linolenate (31.7% α-acyl; 24.2% βacyl), total 20:3 and 20:4 (15.7% α-acyl). The13C NMR spectroscopic analysis of carrot seed oil identifies the presence of saturated (18:0), 18:1(6Z), 18:1(9Z), and 18:2(9Z, 12Z). The saturated fatty acid is found in the α-acyl positions. Semi-quantitative assessment of the signal intensities gives the relative percentages of the fatty acids as: 18:0 (4.5% α-acyl), 18:1(6Z) (49.6% α-acyl; 19.7% β-acyl), oleate (6.5% α-acyl; 8.6% β-acyl) and linoleate (5.2% α-acyl; 6.9% β-acyl).  相似文献   

4.
Bacillus megaterium ALA2 produces many oxygenated FA from linoleic acid: 12,13-dihydroxy-9(Z)-octadecenoic acid; 12,13,17-trihydroxy-9(Z)-octadecenoic acid; 12,13,16-trihydroxy-9(Z)-octadecenoic acid; 12-hydroxy-13,16-epoxy-9 (Z)-octadecenoic acid; and 12,17;13,17-diepoxy-16-hydroxy-9 (Z)-octadecenoic acid. Recently, we studied the monooxygenase system of B. megaterium ALA2 by comparing its palmitic acid oxidation products with those of the well-studied catalytically self-sufficient P450 monooxygenase of B. megaterium ATCC 14581 (NRRL B-3712) and of B. subtilis strain 168 (NRRI B-4219). We found that their oxidation products are identical, indicating that their monooxygenase systems (hydroxylation) are similar. Now, we report that strain ALA2 epoxidizes linoleic acid to 12,13-epoxy-9(Z)-octadecenoic acid and 9,10-epoxy-12 (Z)-octadecenoic acid, the initial products in the linoleic acid oxidation. The epoxidation enzyme did not oxidize specific double bond of the linoleic acid. The epoxidation activity of strain ALA2 was compared with the above-mentioned two Bacillus strains. These two Bacillus strain also produced 12,13-expoxy-9 (Z)-octadecenoic acid and 9,10-epoxy-12(Z)-octadecenoic acid, indicating that their epoxidation enzyme systems might be similar. The ratios of epoxy FA production by these three strains (A1 A2, NRRI B-3712, and NRRI B-4219) were, respectively, 5.56∶0.66∶0.18 for 12,13-epoxy-9(Z)-octadecenoic acid and 2.43∶0.41∶0.57 for 9,10-epoxy-12(Z)-octadecenoic acid per 50 mL medium per 48 h.  相似文献   

5.
The contents of rock lobster cephalothorax were analyzed for lipid content and fatty acid composition. They contain a diversity of saturated (35.5±0.5%), monounsaturated (26.3±1.7%), and polyunsaturated fatty acids, n-3 highly unsaturated fatty acids (11.5±0.5%) among them. The possibility of using these products as a supplement to fish and food animals’ diets is discussed.  相似文献   

6.
The γ-linolenic acid (Z,Z,Z-6,9,12-octadecatrienoic acid, GLA) present in borage oil free fatty acids was concentrated in esterification reactions that were catalyzed by several preparations of the acyl-specific lipase ofGeotrichum candidum. In this manner, a 95% recovery of the GLA originally present in borage oil (25% GLA) was obtained as a highly enriched fatty acid fraction with a GLA content of >70%. Other fatty acids concentrated in this fraction were the monounsaturated fatty acids with chainlengths of C-20 and longer that were present in the oil. An immobilized preparation ofG. candidum on silica gel also was used for the enrichment of GLA in borage oil. In this instance, a 75% recovery of GLA was obtained, and the supported lipase was reusable (three cycles) with minimal loss in activity. Presented in part at the 84th Annual Meeting of the American Oil Chemists’ Society, Anaheim, California, May 1993.  相似文献   

7.
A new microbial isolate,Flavobacterium sp. DS5, converted oleic and linoleic acids to their corresponding 10-keto-and 10-hydroxy fatty acids. The hydration enzyme seems to be specific to the C-10 position. Conversion products from α- and γ-linolenic acids were identified by gas chromatography/mass spectrometry, Fourier transform infrared, and nuclear magnetic resonance as 10-hydroxy-12(Z),15(Z)-octadecadienoic and 10-hydroxy-6(Z),12(Z)-octadecadienoic acids, respectively. Products from other 9(Z)-unsaturated fatty acids also were identified as their corresponding 10-hydroxy- and 10-keto-fatty acids.Trans unsaturated fatty acid was not converted. From these results, it is concluded that strain DS5 hydratase is indeed a C-10 positional-specific andcis-specific enzyme. DS5 hydratase prefers an 18-carbon monounsaturated fatty acid. Among the C18 unsaturated fatty acids, an additional double bond at either side of the 9,10-position lowers the enzyme hydration activity. Because hydratases from other microbes also convert 9(Z)-unsaturated fatty acids to 10-hydroxy fatty acids, the C-10 positional specificity of microbial hydratases may be universal.  相似文献   

8.
A mutant defective in Δ12-desaturase of an arachidonic-acid producing fungus,Mortierella alpina 1S-4, was shown to be a novel potent producer of Mead acid (5,8,11-cis-eicosatrienoic acid, 20:3ω9). The fungus produced several fatty acids of the n-9 family,i.e., 6,9-cis-octadecadienoic acid (18:2ω9), 8,11-cis-eicosadienoic acid (20:2ω9) and 20:3ω9. Significantly high levels of these fatty acids were produced during growth at low temperatures (12–20°C). On submerged cultivation at 20°C for 10 days in a 5-L fermenter containing 2% glucose plus 1% yeast extract (pH 6.0), the production of 20:3ω9 reachedca. 0.8 g/L (56 mg/g dry mycelia), accounting for 15% (by wt) of the total mycelial fatty acids. The other major fatty acids were palmitic acid (6%), stearic acid (11%), oleic acid (45%), 18:2ω9 (12%) and 20:2ω9 (3%). Studies on the distribution of fatty acids among lipid classes showed that, irrespective of the growth temperature employed (12–28°C),ca. 70% (by mol) of 20:3ω9 was present in the triglyceride and the remainder in the phospholipid fraction, especially in phosphatidylcholine (PC). When the fungus was grown at 12°C, the proportion of 20:3ω9 in the PC fraction wasca. 55%. On leave from Suntory Ltd.  相似文献   

9.
The de novo biosynthesis of fatty acids in the wild, calanoid copepodParacalanus parvus was studied. The incubation of labeled acetate proved the de novo biosynthesis of saturated and monounsaturated even fatty acids from 14 to 20 carbons and the 22∶1 acid. Saturated and monounsaturated uneven fatty acids from 15 to 21 carbons were also synthesized. The copepod could not synthesize linoleic and α-linolenic acids. By administration of [1-14C]palmitate, [1-14C] stearate and [1-14C]oleate, it was possible to elucidate the general pattern of the de novo biosynthesis of fatty acids in the wildP. parvus.  相似文献   

10.
9(Z)-Octadecenamide, hexadecenamide, tetradecenamide and tetradecanamide were produced by a novel bioconversion of oleic acid withBacillus megaterium NRRL B-3437. Although chemical synthesis is more practical, the bioconversion to fatty amides (5–7% of total recovered lipids) was unique for its requirement of both enzymatic catalysis and equimolar oleic acid/ammonium salt substrates. Purified octadecenamide was obtained by silica gel and high-pressure liquid chromatographic procedures and was characterized by gas chromatography, mass spectrometry, infrared and nuclear magnetic resonance.  相似文献   

11.
The fatty acid composition, tocopherol and tocotrienol content, and oxidative stability of petroleum benzene-extracted Gevuina avellana Mol (Proteaceae) seed oil were determined. Positional isomers of monounsaturated fatty acids were elucidated by gas chromatography-electron impact mass spectrometry after 2-alkenyl-4,4-dimethyloxazoline derivatization. This stable oil (Rancimat induction period at 110°C: 20 h) is composed of more than 85% monounsaturated fatty acids and about equal amounts (6%) of saturated and polyunsaturated (principally linoleic) fatty acids. Unusual positional isomers of monounsaturated fatty acids, i.e., C16:1 Δ11, C18:1 Δ12, C20:1 Δ11, C20:1 Δ15, C22:1 Δ17, and presumably C22:1 Δ19 were identified. The C18:1 Δ12 and C22:1 Δ19 fatty acids are described for the first time in G. avellana seed oil. While only minute quantities of α-, γ-tocopherols and β-, γ- and δ-tocotrienols were found, the oil contained a substantial amount of α-tocotrienol (130 mg/kg). The potential nutritional value of G. avellana seed oil is discussed on the basis of its composition.  相似文献   

12.
Saturated very long chain fatty acids (fatty acids with greater than 22 carbon atoms; VLCFA) accumulate in peroxisomal disorders, but there is little information on their turnover in patients. To determine the suitability of using stable isotope-labeled VLCFA in patients with these disorders, the metabolism of 22-methyl[23,23,23-2H3]tricosanoic (iso-lignoceric) acid was studied in rats in vivo and in human skin fibroblasts in culture. The deuterated iso-VLCFA was degraded to the corresponding 16- and 18-carbon iso-fatty acids by rats in vivo and by normal human skin fibroblasts in culture, but there was little or no degradation in peroxisome-deficient (Zellweger’s syndrome) fibroblasts, indicating that its oxidation was peroxisomal. Neither the 14-, 20-, and 22-carbon iso-fatty acids nor the corresponding odd-chain metabolites could be detected. In the rat, the organ containing most of the iso-lignoceric acid, and its breakdown products, was the liver, whereas negligible amounts were detected in the brain, suggesting that little of the fatty acid crossed the blood-brain barrier. Our data indicate that VLCFA labeled with deuterium at the ω-position of the carbon chain are suitable derivatives for the in vivo investigation of patients with defects in peroxisomal β-oxidation because they are metabolized by the same pathways as the corresponding n-VLCFA. Moreover, as iso-VLCFA and their β-oxidation products are readily separated from the corresponding n-fatty acids by normal chromatographic procedures, the turnover of VLCFA can be more precisely measured. A preliminary report of part of this work (Reference 18) was presented at the 5th International Symposium on the Synthesis and Applications of Isotopes and Isotopically Labelled Compounds, Strasbourg, France, June 20–24, 1994.  相似文献   

13.
The objective of this study was to investigate the use of lipases as catalysts for producing concentrates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil as an alternative to conventional chemical procedures. Transesterification of fish oil with ethanol was conducted under anhydrous solvent-free conditions with a stoichiometric amount of ethanol. Among the 17 lipases tested, the results showed that Pseudomonas lipases had the highest activity toward the saturated and monounsaturated fatty acids in the fish oil, much lower activity toward EPA and DHA and, at the same time, good tolerance toward the anhydrous alcoholic conditions. With 10 wt% of lipase, based on weight of the fish oil triacylglycerol substrate (15% EPA and 9% DHA initial content), a 50% conversion into ethyl esters was obtained in 24 h at 20°C, in which time the bulk of the saturated and monounsaturated fatty acids reacted, leaving the long-chain n-3 polyunsaturated fatty acids unreacted in the residual mixture as mono-, di-, and triacylglycerols. This mixture comprised approximately 50% EPA+DHA. Total recovery of DHA and EPA was high, over 80% for DHA and more than 90% for EPA. The observed fatty acid selectivity, favoring DHA as a substrate, was most unusual because most lipases favor EPA.  相似文献   

14.
In this paper a method is described for preparing 10 g or more of heptadecenoic acid (C17:1ω8) of 99 p.100 purity fromCandida tripicallis yeast. Three cycles of treatment, based on crystallization techniques, were used successively: (1) Crystallization of fatty acids (in free form) from acetone at −25 C induced the elimination of most of the saturated fatty acids, and at −60 C, of all of the poly-unsaturated acids. (2) Inclusion formation of fatty acids (as methyl esters) with urea at hC induced the removal of all of the remaining saturated methyl esters and most of methyl oleate. (3) Crystallization of fatty acid methyl esters from acetone at −60 C removed almost all the remaining monounsaturated methyl esters (methyl palmitoleate and methyl oleate). Total efficiency of the preparation was about 17 p. 100.  相似文献   

15.
Pierre Clouet  Jean Bezard 《Lipids》1979,14(3):268-273
Microsomes and mitochondria of liver, kidneys, and heart were incubated with [14-14C]erucic acid in three assay media: one favorable for chain elongation (NADPH+KCN), another favorable for β-oxidation and the last one for shortening (NADP+KCN). Elongating reactions occurred mainly in microsomes, those of kidneys being very active; the mitochondria also showed some activity, heart mitochondria being, however, more active than the microsomes, when considering the amount of erucic acid activated. In the medium for β-oxidation, practically no shortened fatty acids were found. On the contrary, when β-oxidation was inhibited, and in the presence of NADP, the formation of shorter monoenes, probably in the outer membrane of the mitochondria, was observed, namely eicosenoic acid in high amount, oleic acid and hexadecenoic acid. Mitochondria from liver were very active as were those of heart, when compared with the quantity of activated erucic acid. In heart, the mitochondria shortened erucic acid into oleic acid and hexadecenoic acid, which were then probably used as energy substrates. With carnitine and without NADP, shortened fatty acids were formed in the mitochondria of liver, probably by the first reactions of β-oxidation. In this case, the proportions of oleic acid and hexadecenoic acid were higher than with NADP alone. In the presence of carnitine and NADP, the level of the chain-shortening reaction did not differ from that observed with NADP alone. It appears, therefore, that the activated erucic acid is mainly directed towards shortening reactions and not towards transfer reactions across the mitochondrial membranes.  相似文献   

16.
High concentrations of polyunsaturated fatty acids (PUFA) in meat have detrimental effects on its technical properties. The present study was carried out to investigate whether PUFA levels in pork can be reduced by increasing the concentrations of oleic acid in pig diets. To this end a bifactorial experiment was carried out with 48 female growing finishing pigs. Six different diets were used with two different concentrations of linoleic acid (12 vs. 24 g/kg) and three different concentrations of oleic acid (12 vs. 18 vs. 24 g/kg). The experiment started at a body weight (BW) of 58 kg and continued until 115 kg BW. The fatty acid composition of total lipids of backfat, perirenal fat and musculus (m.) longissimus dorsi was analysed. Concentrations of linoleic acid and total PUFA in backfat and perirenal fat were affected only by the dietary linoleic acid content but not at all by the dietary oleic acid content. Increasing the dietary concentration of oleic acid raised the level of oleic acid in those tissues at the expense of saturated fatty acids, suggesting competition between monounsaturated fatty acids and saturated fatty acids for incorporation into triglycerides. At the low dietary linoleic acid concentration, the percentages of linoleic acid and total PUFA in total lipids of m. longissimus dorsi were also unaffected by the dietary oleic acid content. In contrast, at the high dietary linoleic acid concentration, percentages of linoleic acid and total PUFA of the m. longissimus dorsi were reduced by increasing the dietary concentration of oleic acid, suggesting that oleic acid and linoleic acid compete for incorporation into muscle lipids. Thus, at high dietary linoleic acid levels the fatty acid composition of the m. longissimus dorsi was favourably affected by high dietary oleic acid concentrations; in backfat and perirenal fat, however, no beneficial effect of high dietary oleic acid levels was seen.  相似文献   

17.
The fatty acid composition of 39 mature human milk samples from four Spanish women collected between 2 and 18 weeks during lactation was studied by gas chromatography. The conjugated linoleic acid (CLA) isomer profile was also determined by silver‐ion HPLC (Ag+‐HPLC) with three columns in series. The major fatty acid fraction in milk lipids throughout lactation was represented by the monounsaturated fatty acids, with oleic acid being the predominant compound (36–49% of total fatty acids). The saturated fatty acid fraction represented more than 35% of the total fatty acids, and polyunsaturated fatty acids ranged on average between 10 and 13%. Mean values of total CLA varied from 0.12 to 0.15% of total fatty acids. The complex mixture of CLA isomers was separated by Ag+‐HPLC. Rumenic acid (RA, cis‐9 trans‐11 C18:2) was the major isomer, representing more than 60% of total CLA. Trans‐9 trans‐11 and 7‐9 (cistrans + transcis) C18:2 were the main CLA isomers after RA. Very small amounts of 8‐10 and 10‐12 C18:2 (cis‐trans + trans‐cis) isomers were detected, as were different proportions of cis‐11 trans‐13 and trans‐11 cis‐13 C18:2. Although most of the isomers were present in all samples, their concentrations varied considerably.  相似文献   

18.
The degradation of exogenous radioactively labeled fatty acids by 5-day-old barley shoots was examined. [1-14C] Linoleic acid was observed to be degraded 7 times faster than [1-14C] oleic acid and 5 times faster than [1-14C] palmitic acid. The pathway of degradation was determined by identifying the water-soluble products and determined to be β-oxidation. During a 15 min incubation, the barley shoots took up 0.91 nmol/g fresh wt of linoleic acid, of which 0.16 nmol/g fresh wt was incorporated into glutamic acid, 0.07 nmol/g fresh wt into succinic acid and 0.002 nmol/g fresh wt into carbohydrates. By 30 min, additional TCA cycle intermediates, especially malic acid, were detected. Palmitic acid and oleic acid were broken down to the same products. The rates of uptake and the distribution of label into lipids were determined. The uptake of label by the tissue was similar for all 3 fatty acid substrates. Label from linoleic, oleic and palmitic acids was found to be incorporated into similar lipids, primarily phosphatidylcholine (PC), and the extent of incorporation was comparable. Although all 3 fatty acid substrates were broken down by β-oxidation, the reason for the more rapid degradation of linoleic acid was not established. It does not appear to be related to uptake of substrate or incorporation of label into lipids.  相似文献   

19.
The fat contents of 12 brands of biscuits were extracted and evaluated for free fatty acids (FFA) and their fatty acid composition (FAC). The oil content and FFA varied from 13.7 to 27.6% and 0.2 to 1.0%, respectively. The FAC was analyzed by gas chromatography–mass spectroscopy with particular emphasis on trans fatty acids (TFA). Total saturated, unsaturated, cis-monounsaturated and polyunsaturated fatty acids were determined in the range of 37.9–46.9, 53.0–62.0, 12.3–43.7 and 0.1–9.2%, respectively. The high amount of TFA was observed in all biscuit samples and varied from 9.3 to 34.9%. The quantity and quality of the lipid fraction of the biscuits indicated that the all analyzed biscuits are a rich source of fat, saturated fatty acids and trans fatty acids, consequently not suitable for the health of consumers. The high content of trans fatty acids and palmitic acid also indicated that blends of RBD palm oil and partially hydrogenated oil had been used in the biscuit manufacturing.  相似文献   

20.
We identified many novel oxygenated FA produced from linoleic acid by microbial strain ALA2: 12,13,17-trihydroxy-9(Z)-octadecenoic acid (12,13,17-THOA); 12,13,16-trihydroxy-9(Z)-octadecenoic acid (12,13,16-THOA); 12-hydroxy-13,16-epoxy-9(Z)-octadecenoic acid; and 12,17;13,17-diepoxy-16-hydroxy-9(Z)-octadecenoic acid. 12,13,17-THOA, the main product, inhibits the growth of some plant pathogenic fungi. Recently, we reclassified strain ALA2 as Bacillus megaterium ALA2 NRRL B-21660 and opened a possible link with the well-studied catalytically self-sufficient P450 monooxygenase of Bacillus megaterium ATCC 14581 (NRRL B-3712) and B. subtilis strain 168 (NRRL B-4219). Now we have found that strain ALA2 also oxidizes palmitic acid into three oxygenated products: 13-, 14-, and 15-hydroxy palmitic acids. This indicates that strain ALA2 also possesses a monooxygenase system similar to the abovementioned well-known strains. These data facilitate studies on the oxygenase system of strain ALA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号