首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
We reviewed mechanisms of multidrug resistance (MDR) phenotype in tumor cells and evaluated analytical methods for detection of clinical MDR. A well-recognized mechanism of MDR phenotype is the induction and increased expression of P-glycoprotein (P-gp) which is a 170 kDa cellular transmembrane protein encoded by a multidrug-resistance 1 gene (MDR1) and works as a drug efflux pump. Cellular MDR phenotype through P-gp/MDR1 can be detectable at protein level by: (1) using immunohistochemical method, flow cytometric assay and Western blot analysis with monoclonal antibodies against human P-gp, and (2) measuring Rhodamine 123 dye-efflux as a functional assay of P-gp. Molecular knowledge and recent technical progress enable to determine MDR1 gene expression by RT-PCR-based analytical methods as well as conventional quantification methods of gene expression such as Northern blot analysis. In the evaluation of P-gp/MDR1 expression in clinical samples, in which amount of materials was limited, utilization of simple and sensitive methods like competitive RT-PCR assay might be efficacious for its quantitative detection in clinical laboratories. Evidences which showed the positive correlation between the expression of P-gp/MDR1 and clinical resistance or refractoriness of tumor cells to anticancer drugs involved in MDR have been accumulated and support the clinical importance of its detection to circumvent resistance with alternate use of non-MDR drugs.  相似文献   

3.
4.
The MDR1 gene product, P-glycoprotein (P-gp), works as a transmembrane efflux pump for several cytotoxic products, representing a major cause for cancer treatment failure. Rhodamine 123 (Rh123), a low toxic fluorescent probe commonly used to assess mitochondrial bioenergetics in living cells, has also been used to measure the efflux activity of P-gp in both normal and malignant cells. Analysis of variation in cellular fluorescence by measuring the rates of Rh123 influx and efflux, together with the effect of mdr reversing agents, allows the investigation of drug-resistant phenotypes in cancer samples. We have studied the functional activity of P-gp in human leukemic cell lines using flow cytometry, taking into consideration that variables such as Rh123 cytotoxicity, culture conditions, cell membrane integrity, as well as the effect of specific P-gp modulators, can impair the resolution of the Rh123-efflux measurements. The studies show that: (1)optimal non-cytotoxic concentrations of Rh123 which allow appropriate color compensation are in the range of 50-200 ng/ml; (2) life-gating allows accurate measurement on the 50% average rate of Rh123 efflux; (3) relative efficiency of P-gp inhibitors was PSC-833 > cyclosporin A > verapamil; and (4) the presence or absence of fetal calf serum had no effect on the bioavailability of chemosensitizer agents, with the exception of serum-free experiments, which showed a significant decrease in P-gp activity under the presence of PSC-833 (P = 0.05). Hence, we recommend this experimental strategy for clinical practice better to study the cellular drug resistance phenotype.  相似文献   

5.
6.
P-glycoprotein (P-gp), responsible for multidrug resistance (MDR) of tumoral cells, is also expressed in apical membranes of normal epithelial cells, among which are proximal tubular cells. Ecto-5'-nucleotidase (5'Nu), co-located with P-gp in renal brush border membranes, could be instrumental in the expression of MDR phenotype. P-gp activity [assessed by rhodamine 123 (R123) and [3H]vinblastine (3H-VBL) accumulation] was evaluated in MDCK cell lines in which human 5'Nu was expressed at different levels after retroviral infection: MDCK-5'NU/- cells with a low 5'Nu activity (Vmax < 2 pmol/mg protein/min) and MDCK-5'NU/+ cells, which expressed a high level of 5'Nu (Vmax 150 +/- 18.5 pmol/mg protein/min). MDCK-5'NU/- cells did not display functional expression of MDR. In MDCK-5'NU/+ cells, R123 and 3H-VBL accumulation was significantly lower than in MDCK-5'NU/- cells and was dramatically enhanced by P-gp inhibitors. This high P-gp activity in MDCK-5'NU/+ cells was confirmed by their resistance to colchicine (measured by LDH release and MTT assay) as compared to MDCK-5'NU/- and was accounted for by increased membrane expression of P-gp assessed by Western blot. Neither AMP nor adenosine, the substrate and the product of 5'Nu, respectively, affected P-gp activity. Inhibition of 5'Nu with alpha beta-methylene-adenosine-diphosphate (alpha beta MADP) or with a blocking anti-5'Nu antibody (1E9) did not blunt MDR expression in MDCK-5'NU/+ cells. Conversely, the anti-5'Nu antibody 5F/F9, which did not block the enzymatic site, induced a decrease of P-gp activity. Further, incubation of MDCK-5'NU/- cells with conditioned medium from MDCK-5'NU/+ cells, which contained significant amounts of released 5'Nu, induced MDR phenotype. In conclusion: (i) expression of ecto-5'Nu promotes multidrug resistance (MDR) activity in renal epithelial cells by enhancement of P-gp expression; (ii) this effect does not involve enzymatic activity of 5'Nu; (iii) supernatants of cells that express 5'Nu conferred P-gp activity to 5'Nu negative cells.  相似文献   

7.
8.
The aim of this study was to investigate the link between protein kinase C (PKC) and multidrug resistance (mdr) phenotype. The expression of both was studied in doxorubicin-resistant MCF-7/Adr cells as they reverted to the wild-type phenotype when cultured in the absence of drug. The following parameters were measured in cells 4, 10, 15, 20 and 24 weeks after removal of doxorubicin; (1) sensitivity of the cells towards doxorubicin; (2) levels of P-glycoprotein (P-gp) and MDR1 mRNA; (3) levels and cellular localization of PKC isoenzyme proteins alpha, theta and epsilon; and (4) gene copy number of PKC-alpha and MDR1 genes. Cells lost their resistance gradually with time, so that by week 24 they had almost completely regained the drug sensitivity seen in wild-type MCF-7 cells. P-gp levels measured by Western blot mirrored the change in doxorubicin sensitivity. By week 20, P-gp had decreased to 18% of P-gp protein levels at the outset, and P-gp was not detectable at week 24. Similarly, MDR1 mRNA levels had disappeared by week 24. MCF-7/Adr cells expressed more PKCs-alpha and -theta than wild-type cells and possessed a different cellular localization of PKC-epsilon. The expression and distribution pattern of these PKCs did not change for up to 20 weeks, but reverted back to that seen in wild-type cells by week 24. MDR1 gene amplification remained unchanged until week 20, but then was lost precipitously between weeks 20 and 24. The PKC-alpha gene was not amplified in MCF-7/Adr cells. The results suggest that MCF-7/Adr cells lose MDR1 gene expression and PKC activity in a co-ordinate fashion, consistent with the existence of a mechanistic link between MDR1 and certain PKC isoenzymes.  相似文献   

9.
The multidrug resistance (mdr) genes encode P-glycoproteins, integral membrane proteins which function as drug efflux transporters. Exposure of animals in vivo and cells in vitro to a variety of xenobiotics leads to increased mdr1 gene expression and higher levels of P-glycoprotein. This response may protect cells from the cytotoxic effects of these compounds. In this investigation we functionally expressed the rat mdr1b gene in NIH 3T3 cells and assessed the ability of the encoded P-glycoprotein to protect these cells from the cytotoxicity of xenobiotics known to induce mdr1b expression. In long-term colony survival assays, stably expressed mdr1b conferred resistance to cytotoxic drugs such as colchicine, vinblastine and doxorubicin, but not to 5-fluorouracil nor to the carcinogens aflatoxin B1 and N-hydroxy-acetylaminofluorene. The mdr reversal agent verapamil restored cytotoxicity of colchicine, doxorubicin, actinomycin D, vinblastine and taxol, but had no effect on the sensitivity of these cells to 5-fluorouracil, aflatoxin B1 or N-hydroxy-acetylaminofluorene. In a competitive transport assay, verapamil and, to a lesser extent, colchicine blocked the increased efflux of the fluorescent dye rhodamine 123 from mdr1b-transfected cells, whereas aflatoxin B1 did not compete for this export. These data demonstrate that expression of the rat mdr1b encoded P-glycoprotein can protect cells from a diverse group of compounds previously identified to be mdr substrates, however, other effective inducers of mdr expression, such as aflatoxin B1 and N-hydroxy-acetylaminofluorene, remain potent cytotoxins despite high levels of P-glycoprotein. The fact that compounds which are not themselves substrates can induce P-glycoprotein expression may have implications for pharmacokinetic interactions and chemotherapy.  相似文献   

10.
Two membrane glycoproteins acting as energy-dependent efflux pumps, mdr-encoded P-glycoprotein (P-gp) and the more recently described multidrug resistance-associated protein (MRP), are known to confer cellular resistance to many cytotoxic hydrophobic drugs. In the brain, P-gp has been shown to be expressed specifically in the capillary endothelial cells forming the blood-brain barrier, but localization of MRP has not been well characterized yet. Using RT-PCR and immunoblot analysis, we have compared the expression of P-gp and Mrp1 in homogenates, isolated capillaries, primary cultured endothelial cells, and RBE4 immortalized endothelial cells from rat brain. Whereas the mdr1a P-gp-encoding mRNA was specifically detected in brain microvessels and mdr1b mRNA in brain parenchyma, mrp1 mRNA was present both in microvessels and in parenchyma. However, Mrp1 was weakly expressed in microvessels. Mrp1 expression was higher in brain parenchyma, as well as in primary cultured brain endothelial cells and in immortalized RBE4 cells. This Mrp1 overexpression in cultured brain endothelial cells was less pronounced when the cells were cocultured with astrocytes. A low Mrp activity could be demonstrated in the endothelial cell primary monocultures, because the intracellular [3H]vincristine accumulation was increased by several MRP modulators. No Mrp activity was found in the cocultures or in the RBE4 cells. We suggest that in rat brain, Mrp1, unlike P-gp, is not predominantly expressed in the blood-brain barrier endothelial cells and that Mrp1 and the mdr1b P-gp isoform may be present in other cerebral cells.  相似文献   

11.
Resistance to chemotherapy in multiple myeloma (MM) and acute myeloid leukemia (AML) is frequently caused by multiple drug resistance (MDR), characterized by a decreased intracellular drug accumulation. MDR is associated with expression of P-glycoprotein (P-gp). GF120918, an acridine derivative, enhances doxorubicin cell kill in resistant cell lines. In this study, the effect of GF120918 on MDR cell lines and fresh human leukemia and myeloma cells was investigated. The reduced net intracellular rhodamine-123 (Rh-123) accumulation in the MDR cell lines RPMI 8226/Dox1, /Dox4, /Dox6 and /Dox40 as compared with wild-type 8226/S was reversed by GF120918 (0.5-1.0 microM), and complete inhibition of rhodamine efflux was achieved at 1-2 microM. This effect could be maintained in drug-free medium for at least 5 h. GF120918 reversal activity was significantly reduced with a maximum of 70% in cells incubated with up to 100% serum. GF120918 significantly augmented Rh-123 accumulation in vitro in CD34-positive acute leukemia (AML) blasts and CD38-positive myeloma (MM) plasma cells obtained from 11/27 de novo AML and 2/12 refractory MM patients. A significant correlation was observed between a high P-gp expression and GF120918 induced Rh-123 reversal (P=0.0001). Using a MRK16/IgG2a ratio > or = 1.1, samples could be identified with a high probability of GF120918 reversal of Rh-123 accumulation. In conclusion, GF120918 is a promising MDR reversal agent which is active at clinically achievable serum concentrations.  相似文献   

12.
13.
BACKGROUND: P-glycoproteins are membrane-associated transporters that can render cells resistant to a variety of chemotherapeutic drugs. Reversal agents are (preferably nontoxic) drugs that can inhibit these P-glycoproteins and thereby overcome multidrug resistance. PSC833, a cyclosporin A analog, is a reversal agent that has shown potential in in vitro experiments and in clinical trials. We tested PSC833 to determine whether it is a transported substrate of human and murine P-glycoproteins associated with multidrug resistance (encoded by the human MDR1 gene and its murine homolog, mdr1a) and whether it can completely inhibit these P-glycoproteins under simulated in vivo conditions. METHODS: Monolayers of polarized LLC-PK1 pig kidney cells transfected with complementary DNA containing either MDR1 or mdr1a sequences were used to measure the directional transport of P-glycoprotein substrates under various serum conditions. RESULTS: In contrast to two previous studies, we found that PSC833 is transported by both the MDR1 and the mdr1a P-glycoproteins, albeit at a low rate. PSC833 has a very high affinity for the MDR1 P-glycoprotein, and its Michaelis constant (Km) for transport is 50 nM, fourfold lower than for cyclosporin A. Inhibition of drug transport by PSC833 is approximately eightfold less effective in 100% fetal bovine serum than in tissue culture medium containing 10% serum. The concentration of PSC833 necessary to fully inhibit transport of digoxin and paclitaxel (Taxol) under complete (i.e., 100%) serum conditions is higher than the plasma concentrations achieved in clinical trials. CONCLUSIONS: Although PSC833 binds efficiently to the MDR1 P-glycoprotein and is released only sluggishly, the high concentrations of PSC833 necessary to inhibit this P-glycoprotein under complete serum conditions in our in vitro system suggest that it may be difficult for PSC833 alone to produce total inhibition of P-glycoprotein activity in patients.  相似文献   

14.
Clinical chemotherapy of breast carcinomas must be considered insufficient, mainly due to the appearance of drug resistance. The multidrug resistance (MDR) phenotype, either intrinsically occurring or acquired, e.g., against a panel of different antineoplastic drugs, is discussed in relation to several MDR-associated genes such as the MDR-gene mdr1 encoding the P-glycoprotein (PGP), the MRP gene (multidrug resistance protein) encoding an MDR-related protein or the LRP gene encoding the lung resistance protein. Numerous experimental and clinical approaches aiming at reversing resistance require well-characterised in vitro and in vivo models. The aim of our work was to develop multidrug resistant sublines from human xenotransplanted breast carcinomas, in addition to the broadly used line MCF-7 and its multidrug resistant subline MCF-7/AdrR. MDR was induced in vitro with increasing concentrations of Adriablastin (ADR) for several weeks, resulting in a 3.5- to 35-fold increase in IC50 values using the MTT-test. Cell lines were cross-resistant toward another MDR-related drug, vincristine, but remained sensitive to non-MDR-related compounds such as cisplatin and methotrexate. The resistance toward Adriamycin and vincristine was confirmed in vivo by a lack of tumour growth inhibition in the nude mouse system. Gene expression data for the mdr1/PGP, MRP/MRP and LRP/LRP on both the mRNA (RT-PCR) and the protein levels (immunoflow cytometry) demonstrated that induction of mdr1 gene expression was responsible for the acquired MDR phenotype. Rhodamine efflux data, indicated by PGP overexpression, underlined the development of this MDR mechanism in the newly established breast carcinoma lines MT-1/ADR, MT-3/ADR and MaTu/ADR.  相似文献   

15.
PURPOSE: Drug disposition is often altered in inflammatory disease. Although the influence of inflammation on hepatic drug metabolism and protein binding has been well studied, its impact on drug transport has largely been overlooked. The multidrug resistance (MDR) gene product, P-glycoprotein (P-gp) is involved in the active secretion of a large variety of drugs. Our goal was to ascertain the influence of acute inflammation (AI) on the expression and functional activity of P-gp. METHODS: AI was induced in rats through turpentine or lipopolysaccharide (LPS) administration. Expression of P-gp in liver was detected at the level of protein on Western blots using the monoclonal antibody C-219 and at the level of mRNA using an RNase protection assay. P-gp mediated transport activity was assessed by measuring the verapamil-inhibitable efflux of rhodamine 123 (R123) in freshly isolated hepatocytes. RESULTS: Turpentine-induced AI significantly decreased the hepatic protein expression of P-gp isoforms by 50-70% and caused a significant 45-65% reduction in the P-gp mediated efflux of R123. Diminished mRNA levels of all three MDR isoforms were seen. LPS-induced AI similarly resulted in significantly reduced levels and activity of P-gp in liver. Although differences in the constitutive levels of P-gp were seen between male and female rats, the influence of AI on P-gp expression and activity was not gender specific. CONCLUSIONS: Experimentally-induced inflammation decreases the in vivo expression and activity of P-gp in liver. This is the first evidence that expression of P-gp is modulated in response to experimentally-induced inflammation.  相似文献   

16.
Cellular drug resistance, which involves several mechanisms such as P-glycoprotein (P-gp) overexpression, kinetic and metabolic quiescence, or the increase in the intracellular levels of glutathione, limits the effectiveness of cancer treatment. It has been reported that functional assessment of the cationic dye rhodamin 123 (Rho123) efflux reveals accurately the drug-resistant phenotype. To study cellular drug resistance, we have obtained a CHO-K1 derived cell line resistant to vinblastine by means of multistep selection. This cell line (CHOVBR) displays high reactivity with a monoclonal antibody (MAb) (C219) directed against an internal domain of P-gp, and an active Rho123 efflux, as shown by parallel flow cytometric and fluorometric assays. However, under similar experimental conditions, the drug-sensitive parental cell line CHO-K1 (as well as the myeloblastic KG1 and KG1a cell lines), was also able to pump Rho123 out. These parental CHO-K1 cells had a very low reactivity against the C219 Mab, as confirmed by Western blot analysis. Both vinblastine and verapamil inhibited Rho123 efflux in CHO-K1 cells, but had no effect on CHOVBR cultures. Also, deprivation of vinblastine for one month did not affect Rho123 efflux in these cells. Our results suggest that the activity of P-gp appears to be essential, but not sufficient to confer drug resistance, and that Rho123-based functional assays of drug resistance should be evaluated for each cellular experimental model.  相似文献   

17.
18.
19.
BACKGROUND: Chemoresistance in some hematologic malignancies has been associated with overexpression of P-glycoprotein, which is encoded by the MDR1 gene (also known as PGY1). However, inconsistencies in data on frequency and clinical relevance of multidrug resistance in B-cell chronic lymphocytic leukemia (B-CLL) may reflect a need for improved techniques to detect this overexpression. PURPOSE: Our purpose was to measure P-glycoprotein activity in peripheral blood cells of B-CLL patients and to analyze possible clinical correlations (disease duration, prior treatment, Rai disease stage, lymphocyte counts, and disease progression). METHODS: P-glycoprotein activity was assayed in peripheral blood cells of 42 consecutive B-CLL patients (22 treated and 20 untreated). We used dual fluorescence in a flow cytometric assay that detects efflux of the fluorescent dye rhodamine 123, which is transported from the cell by the P-glyprotein pump. Leukemia cells were costained with monoclonal antibody Leu12/CD19, and rhodamine 123 efflux was measured. Expression of MDR1 and MDR3 (also known as PGY3) messenger RNA (mRNA) was quantitatively evaluated by polymerase chain reaction (PCR) in 26 cases. RESULTS: Marked rhodamine 123 efflux was observed in 34 (81%) of the 42 cases and was abolished in the presence of multidrug resistance inhibitors. Rhodamine 123 efflux was not associated with Rai stage, lymphocyte counts, duration of disease, or disease progression. Although rhodamine 123-negative cases were about equally distributed among untreated and previously treated patients, the percentage of cells with rhodamine 123 efflux was significantly lower for untreated patients than for those treated with chemotherapy regimens including at least one multidrug resistance-associated drug. MDR1 mRNA was detected in 25 of 26 cases and MDR3 mRNA in all 26. MDR1 mRNA expression was significantly correlated with rhodamine 123 efflux, whereas MDR3 mRNA expression was not significantly correlated; MDR1 and MDR3 mRNA expression was not significantly associated with Rai stage, prior treatment, or disease progresssion. CONCLUSIONS: These findings suggest that P-glycoprotein overexpression in B-CLL is intrinsic rather than acquired and that P-glycoprotein activity is enhanced after exposure to multidrug resistance-associated drugs. This enhanced activity does not seem to be associated with more aggressive disease. Our results also indicate that an assay of P-glycoprotein function combined with PCR is suitable for clinical multidrug resistance screening. IMPLICATIONS: Additional studies are needed to determine whether functional activity of P-glycoprotein, measured by rhodamine 123 efflux, is directly related to clinical drug resistance.  相似文献   

20.
Low-intensity fluorescence of rhodamine-123 (Rh-123) discriminates a quiescent hematopoietic stem cell (HSC) population in mouse bone marrow, which provides stable, long-term hematopoiesis after transplantation. Rh-123 labels mitochondria with increasing intensity proportional to cellular activation, however the intensity of staining also correlates with the multidrug resistance (MDR) phenotype, as Rh-123 is a substrate for P-glycoprotein (P-gp). To address the mechanisms of long-term repopulating HSC discrimination by Rh-123, mouse bone marrow stem and progenitor cells were isolated based on surface antigen expression and subsequently separated into subsets using various fluorescent probes sensitive to mitochondrial characteristics and/or MDR function. We determined the cell cycle status of the separated populations and tested for HSC function using transplantation assays. Based on blocking studies using MDR modulators, we observed little efflux of Rh-123 from HSC obtained from young (3- to 4-week-old) mice, but significant efflux from HSC derived from older animals. A fluorescent MDR substrate (Bodipy-verapamil, BodVer) and Rh-123 both segregated quiescent cells into a dim-staining population, however Rh-123-based separations resulted in better enrichment of HSC function. Similar experiments using two other fluorescent probes with specificity for either mitochondrial mass or membrane potential indicated that mitochondrial activation is more important than either mitochondrial mass or MDR function in defining HSC in young mice. This conclusion was supported by morphologic studies of cell subsets separated by Rh-123 staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号