首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
以不同的锂源和钛源为原料,采用分段煅烧法制备了Li4 Ti5 O12负极活性粉末材料,采用SEM、粒度分析等方法对所获得粉末的粒径特性进行了分析.研究发现,用Li2 CO3和微米级锐钛型TiO2制备的Li4 Ti5 O12粉末粒径的形貌为细小的近球状,粉末充分分散,且呈正态分布.对用该材料组装成的模拟电池,采用恒电流充放电、循环伏安及电化学阻抗法进行电化学性能测试,结果表明:材料具有良好的电化学性能,平台电压基本在1.50~1.52 V之间,以0.2C充放电,放电容量可以达到156.16 mA·h/g.  相似文献   

2.
采用固相球磨法制备了Li2FeP2O7/C正极材料,研究了烧结温度、碳包覆含量以及碳源对其结构、形貌以及电化学性能的影响。结果表明: 高温固相烧结合成样品的适宜温度为680 ℃,以柠檬酸为碳源、碳包覆量为5%时,合成的Li2FeP2O7/C晶型完整,晶粒较小且均匀,0.1C倍率下的放电比容量可达102.6 mAh/g,0.5C倍率下的初次放电比容量可达83.4 mAh/g,循环30次后放电比容量为80.7 mAh/g,展现了较好的循环性能以及倍率性能。  相似文献   

3.
锂离子电池负极材料Li4Ti5O12由于具有独特的结构稳定性和突出的安全性而被广泛研究。然而,较差的高倍率性能严重限制了其在动力锂离子电池中的应用。为了进一步提升Li4Ti5O12负极材料的倍率性能,采用一种便捷的水热法成功制备了新型Li4Ti5O12/双相TiO2纳米片,为显著提高Li4Ti5O12基复合材料的电化学性能提供了一种简便而有效的方法。所合成的Li4Ti5O12/双相TiO2纳米片表现出优良的电化学性能:0.5 C时,具有174 mAh/g的超高可逆容量;当倍率高达30 C时,可逆容量超过140 mAh/g。新型Li4Ti5O12/双相TiO2纳米片的研究将为设计开发满足日益增长的高功率储能需求的新型无碳负极材料提供新思路。  相似文献   

4.
TiCl4水溶液强水解合成Li4Ti5O12的研究   总被引:1,自引:0,他引:1  
在高LiOH浓度下,以TiCl4和LiOH.H2O为原料,水解并合成Ti(OH)62-,控制条件,让Li+嵌入Ti-O八面体中,直接合成了Li4Ti5O12前躯体。对粉体进行了DSC-TGA、XRD分析,结果表明,热处理温度和时间对合成材料的组成和性能影响较大,在700~800℃热处理前驱体即可得到纯尖晶石相Li4Ti5O12。SEM分析及电性能检测表明,经过800℃热处理6 h的样品结晶度好,颗粒分布较均匀,平均粒径约为1μm;在0.1 C充放电倍率下,首次可逆比容量达158.8 mA.h/g,11次循环后,仍有133.8 mA.h/g。  相似文献   

5.
锂离子电池负极材料Li4Ti5O12的制备工艺研究   总被引:2,自引:2,他引:0       下载免费PDF全文
本文主要研究了不同锂源、钛源制备Li4Ti5O12的反应过程,同时对不同制备工艺合成材料的晶体结构进行分析.研究结果表明:采用Li2CO3和微米级锐钛型TiO2制备的Li4Ti5O12为单一相的面心立方尖晶石结构,煅烧工艺条件为600℃保温8h,研磨后,800℃保温2h,该条件还有待于材料电性能测试结果的进一步验证.  相似文献   

6.
对用快淬法制备的层状Li[NixLi1/3-2x/3Mn2/3-x/3]O2(1/6≤x≤1/2)进行了详细地研究,通过正交实验确定了材料的最佳合成工艺条件.将在950℃制备的层状LiMn0.5Ni0.5O2组装成电池,以0.5C充放电,其放电比容量可达到143 mA·h/g.  相似文献   

7.
利用高温固相法制备Li1-xNaxFePO4(x=0,0.05,0.10,0.20)正极材料,并进行电化学性能测试。结果表明,Li0.95Na0.05FePO4材料表现出最好的电化学性能,在0.1C充放电时首次放电容量为107.6mA·h/g,循环20次后的放电容量为109.3mA·h/g,容量保留率几乎100%。在0.5C、1.0C和2.0C不同倍率下放电,容量保持率分别为80.22%、97.36%和91.90%。与纯LiFePO4相比,Li0.95Na0.05FePO4材料具有更高的可逆容量、更稳定的循环性能和更好的倍率性能。  相似文献   

8.
LiCo0.9Zr0.05Ti0.05O2材料的制备及其电化学性能研究   总被引:2,自引:2,他引:0  
以碳酸锂、氧化钴、超细二氧化锆、超细二氧化钛为原料,采用搅拌混合、高温固相烧结法制备了锂离子电池正极材料 LiCo0.9Zr0.05Ti0.05O2,用X射线衍射、扫描电镜对材料的结构与形貌进行了研究,结果表明Co0.9Zr0.05Ti0.05O2与LiCo0.2一样具有六方层状结构.在0.2 C倍率下材料的初始放电容量达149 mA·h/g,2 C倍率下初始放电容量达141.5 mA·h/g,1C倍率下初始放电容量达143.6mA·h/g,3.6 V 放电平台比例达90%,500次循环后容量衰减8%,材料大电流放电性能好、循环寿命长.  相似文献   

9.
以葡萄糖为碳源,采用碳热还原法制得一系列LiFePO4/C材料,其中葡萄糖的添加量分别为10,,15,,20,,25,和30,.通过XRD,SEM和恒流充放电等测试方法,研究了葡萄糖添加量对LiFePO4/C材料结构和电化学性能的影响.结果表明:当葡萄糖添加量为20,时,LiFePO4/C材料以0.2C充放电,放电比容量为140.6mA· h/g;1 C倍率50次循环后,容量保持率达到97,;以0.2C充电,在0.2C,1C,2C,5C和10 C不同倍率下放电,其中10 C倍率放电比容量为89.1mA· h/g,合成材料表现出良好的综合电化学性能.经XRD和SEM测试发现,制得的材料均为橄榄石型结构,不同碳含量对材料的颗粒尺寸有一定的影响.  相似文献   

10.
分别采用氢氧化物共沉淀、碳酸盐共沉淀、喷雾干燥的方法合成了层状α-Na Fe O2结构的富锂正极材料0.5Li2Mn O3·0.5Li(Ni1/3Co1/3Mn1/3)O2,通过X射线衍射分析(XRD)、扫描电子显微镜(SEM)和电化学性能测试对不同合成方法所得的样品进行了表征。实验结果表明:氢氧化物共沉淀合成的前驱体所制备的正极材料0.5Li2Mn O3·0.5Li(Ni1/3Co1/3Mn1/3)O2具有良好的电化学性能,0.05C倍率下首次放电容量可达247.1 m A·h/g,0.2C倍率条件下经过50次循环,容量保持率为98.7%。  相似文献   

11.
采用高温固相法合成了Li_4Ti_5O_(12)和Li_4Ti_(4.95)Ce_(0.05)O_(12)负极材料,采用X射线粉末衍射(XRD)、扫描电镜(SEM)、循环伏安(CV)和充放电测试等手段研究样品的结构和电化学性能。XRD图谱表明铈掺杂并没有改变样品的晶体结构;循环伏安曲线表明Li_4Ti_(4.95)Ce_(0.05)O_(12)样品具有更好的可逆性,铈的掺杂有利于锂离子的可逆脱嵌;微分电容曲线表明Li_4Ti_(4.95)Ce_(0.05)O_(12)的充放电的峰电位值差比Li_4Ti_5O_(12)小,说明前者具有更小的电化学极化;充放电测试表明,5 C倍率充放电时,Li_4Ti_(4.95)Ce_(0.05)O_(12)和Li_4Ti_5O_(12)的可逆放电容量分别为120 m A·h/g和80 m A·h/g左右,说明铈的掺杂提高了Li_4Ti_5O_(12)材料的倍率容量和循环性能。  相似文献   

12.
采用水热法合成Li_4Ti_5O_(12)负极材料,研究材料在大倍率条件下的电化学性能。X射线衍射(XRD)分析结果表明所合成的Li_4Ti_5O_(12)材料晶体尺寸在纳米级。透射电子显微镜(TEM)分析结果表明材料的结晶粒度为50~100 nm。电化学充放电测试结果表明该材料在10 C倍率充放电时首次放电比容量达到269.9 m A·h/g,循环50次后稳定在177 m A·h/g左右,显示出优异的快速充放电性能。  相似文献   

13.
采用溶胶凝胶法合成一种新型的Li_5Cr_9Ti_4O_(24)钛酸盐材料,用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、循环伏安(CV)、充放电测试和阻抗测试等方法研究了样品的结构和电化学性能。结果表明,Li_5Cr_9Ti_4O_(24)粒径大小约为100~200 nm,具有同LiCrTiO_4相似的晶格结构;循环伏安曲线表在1.227 V/1.772 V和1.334 V/1.761 V处出现氧化还原峰;在不同倍率下充放电时,Li_5Cr_9Ti_4O_(24)有较好的放电比容量和倍率性能,大倍率充放电曲线表明Li_5Cr_9Ti_4O_(24)材料具有很高的循环稳定性;阻抗图表明循环后的Li_5Cr_9Ti_4O_(24)材料生成SEI膜。  相似文献   

14.
采用高温固相法成功合成了新型钛基负极材料Na_2Li_2Ti_6O_(14),并研究了其结构及电化学性能。利用高分辨透明电镜(HRTEM)、X射线衍射(XRD)及其Rietveld精修、扫描电子显微镜(SEM)及能谱分析(EDS)表征分析了材料的物相和显微结构。结果表明,合成的Na_2Li_2Ti_6O_(14)负极材料为纯相,具有Fmmm空间群结构;Na_2Li_2Ti_6O_(14)颗粒约为500~800 nm,Na、Ti和O三种元素分布均匀。循环伏安(CV)、充放电及电化学阻抗谱(EIS)测试表明,材料具有较好的锂离子脱嵌可逆性,较好的倍率性能和循环稳定性。钛电流密度为500 m A/g充放电时,Na_2Li_2Ti_6O_(14)材料的首次脱锂(充电)容量为180 m A·h/g,100次循环后可逆容量为136 m A·h/g;100次循环后,Na_2Li_2Ti_6O_(14)材料的电荷转移电阻增加,锂离子扩散系数略有下降,表明Na_2Li_2Ti_6O_(14)材料在循环后SEI膜的生成,降低了材料的电化学活性。  相似文献   

15.
田华玲  粟智 《矿冶工程》2016,(2):104-107
以Li_2CO_3、Fe_2O_3和TiO_2为原料,葡萄糖为碳源,采用高温固相法合成了锂离子电池LiFeTiO_4/C复合材料。采用X射线衍射(XRD)、傅里叶红外光谱(FTIR)、透射电子显微镜(TEM)等手段对材料的晶体结构和形貌进行了表征,通过恒流充放电、循环伏安(CV)和交流阻抗对材料的电化学性能进行了测试。结果表明,碳包覆后的LiFeTiO_4负极材料循环性能优于未经碳包覆的材料。在室温下,充放电倍率为0.5C时,LiFeTiO_4/C负极材料的首次放电比容量为327.8 m Ah/g,循环50周后仍保持在308.3 m Ah/g。  相似文献   

16.
将化学计量比的LiOH·H_2O、Ni(NO_3)_2·6H_2O与超细α-MnO_2纳米线前驱体均匀混合,在800℃下煅烧12 h合成LiNi_(0.5)Mn_(1.5)O_4纳米棒。通过XRD、TEM和电化学测试对样品的晶体结构、表面形貌及电化学性能进行了表征。结果表明:超细α-MnO_2纳米线平均直径为10 nm,多根α-MnO_2纳米线聚集成簇。LiNi_(0.5)Mn_(1.5)O_4纳米棒直径为50 nm,与α-MnO_2纳米团簇的直径相仿。电化学测试结果表明:LiNi_(0.5)Mn_(1.5)O_4纳米棒的初始放电比能量为475 Wh/kg,循环500圈后容量保持率为99%。  相似文献   

17.
共沉淀法合成镍锰酸锂正极材料前驱体   总被引:2,自引:2,他引:0  
通过共沉淀法合成了类球形镍锰酸锂正极材料前驱体, 研究了反应温度、溶液pH值、溶剂组成和表面活性剂十六烷基三甲基溴化铵(CTAB)添加量对前驱体镍锰碳酸盐形貌、粒径及物相组成的影响。结果表明, 适宜的合成条件为:pH=9.0, 反应温度80 ℃, 乙醇与水体积比1∶3, 表面活性剂CTAB添加量为1.5倍临界胶束浓度(CMC)。在该条件下制备的前驱体镍锰碳酸盐具有层片状堆垛的类球形结构; 煅烧后得到的镍锰酸锂材料为无序型的尖晶石结构, 属于Fd-3m空间群, 结晶度高, 粒径约150 nm。对镍锰酸锂进行电化学性能测试, 结果显示, LiNi0.5Mn1.5O4在0.5C下的最大放电比容量为124.8 mAh/g, 20次循环后容量保持率为62.3%, 在大倍率下放电后再次回到0.5C, 放电比容量为73.8 mAh/g。  相似文献   

18.
摘要:本论文采用高温固相反应法制备了高电压尖晶石材料LiNi0.5Mn1.5O4 (LNMO)。采用XRD,Raman,SEM,首次充放电曲线,CV曲线,EIS阻抗谱研究了球磨时间对材料结构和性能的影响。XRD结果表明所有样品均具有相似的晶格结构,Raman结果表明所有样品均为无序型空间结构。SEM研究结果表明,球磨时间为4 h时材料颗粒尺寸较均匀。首次充放电曲线和CV曲线结果表明,球磨时间并没有改变的材料的反应机制。球磨时间4h时,材料表现出最优异的电化学性能,主要包括高容量(0.1 C比容量115.8 mAh g-1),高倍率(10 C 放电比容量 76.2mAh g-1)和高循环稳定性(0.1 C-100次循环后容量保持率为94.7%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号