首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We fabricated 30-nm gate pseudomorphic channel In/sub 0.7/Ga/sub 0.3/As-In/sub 0.52/Al/sub 0.48/As high electron mobility transistors (HEMTs) with reduced source and drain parasitic resistances. A multilayer cap structure consisting of Si highly doped n/sup +/-InGaAs and n/sup +/-InP layers was used to reduce these resistances while enabling reproducible 30-nm gate process. The HEMTs also had a laterally scaled gate-recess that effectively enhanced electron velocity, and an adequately long gate-channel distance of 12nm to suppress gate leakage current. The transconductance (g/sub m/) reached 1.5 S/mm, and the off-state breakdown voltage (BV/sub gd/) defined at a gate current of -1 mA/mm was -3.0 V. An extremely high current gain cutoff frequency (f/sub t/) of 547 GHz and a simultaneous maximum oscillation frequency (f/sub max/) of 400 GHz were achieved: the best performance yet reported for any transistor.  相似文献   

2.
We report, to our knowledge, the best high-temperature characteristics and thermal stability of a novel /spl delta/-doped In/sub 0.425/Al/sub 0.575/As--In/sub 0.65/Ga/sub 0.35/As--GaAs metamorphic high-electron mobility transistor. High-temperature device characteristics, including extrinsic transconductance (g/sub m/), drain saturation current density (I/sub DSS/), on/off-state breakdown voltages (BV/sub on//BV/sub GD/), turn-on voltage (V/sub on/), and the gate-voltage swing have been extensively investigated for the gate dimensions of 0.65/spl times/200 /spl mu/m/sup 2/. The cutoff frequency (f/sub T/) and maximum oscillation frequency (f/sub max/), at 300 K, are 55.4 and 77.5 GHz at V/sub DS/=2 V, respectively. Moreover, the distinguished positive thermal threshold coefficient (/spl part/V/sub th///spl part/T) is superiorly as low as to 0.45 mV/K.  相似文献   

3.
AlGaN/GaN HEMTs on SiC with f/sub T/ of over 120 GHz   总被引:1,自引:0,他引:1  
AlGaN/GaN high electron mobility transistors (HEMTs) grown on semi-insulating SiC substrates with a 0.12 /spl mu/m gate length have been fabricated. These 0.12-/spl mu/m gate-length devices exhibited maximum drain current density as high as 1.23 A/mm and peak extrinsic transconductance of 314 mS/mm. The threshold voltage was -5.2 V. A unity current gain cutoff frequency (f/sub T/) of 121 GHz and maximum frequency of oscillation (f/sub max/) of 162 GHz were measured on these devices. These f/sub T/ and f/sub max/ values are the highest ever reported values for GaN-based HEMTs.  相似文献   

4.
GaAs-based transistors with the highest f/sub T/ and lowest noise figure reported to date are presented in this letter. A 50-nm T-gate In/sub 0.52/Al/sub 0.48/As/In/sub 0.53/Ga/sub 0.47/As metamorphic high-electron mobility transistors (mHEMTs) on a GaAs substrate show f/sub T/ of 440 GHz, f/sub max/ of 400 GHz, a minimum noise figure of 0.7 dB and an associated gain of 13 dB at 26 GHz, the latter at a drain current of 185 mA/mm and g/sub m/ of 950 mS/mm. In addition, a noise figure of below 1.2 dB with 10.5 dB or higher associated gain at 26 GHz was demonstrated for drain currents in the range 40 to 470 mA/mm at a drain bias of 0.8 V. These devices are ideal for low noise and medium power applications at millimeter-wave frequencies.  相似文献   

5.
High-performance 0.15 mu m gate length modulation-doped field-effect transistors (MODFETs) have been fabricated on a lattice-matched InAlAs/InGaAs heterostructure grown by organic vapour phase epitaxy (MOVPE). Excellent 'kink-free' DC characteristics with extrinsic transconductance g/sub m/ of 1080 mS/mm at a drain current of 508 mA/mm have been achieved. A unity current-gain cutoff frequency f/sub T/ of 187 GHz at room temperature has been measured, which is the highest value reported for MOVPE-grown lattice-matched InAlAs/InGaAs MODFETs.<>  相似文献   

6.
Using high-quality polycrystalline chemical-vapor-deposited diamond films with large grains (/spl sim/100 /spl mu/m), field effect transistors (FETs) with gate lengths of 0.1 /spl mu/m were fabricated. From the RF characteristics, the maximum transition frequency f/sub T/ and the maximum frequency of oscillation f/sub max/ were /spl sim/ 45 and /spl sim/ 120 GHz, respectively. The f/sub T/ and f/sub max/ values are much higher than the highest values for single-crystalline diamond FETs. The dc characteristics of the FET showed a drain-current density I/sub DS/ of 550 mA/mm at gate-source voltage V/sub GS/ of -3.5 V and a maximum transconductance g/sub m/ of 143 mS/mm at drain voltage V/sub DS/ of -8 V. These results indicate that the high-quality polycrystalline diamond film, whose maximum size is 4 in at present, is a most promising substrate for diamond electronic devices.  相似文献   

7.
We report an Al/sub 0.3/Ga/sub 0.7/N-Al/sub 0.05/Ga/sub 0.95/N-GaN composite-channel HEMT with enhanced linearity. By engineering the channel region, i.e., inserting a 6-nm-thick AlGaN layer with 5% Al composition in the channel region, a composite-channel HEMT was demonstrated. Transconductance and cutoff frequencies of a 1 /spl times/100 /spl mu/m HEMT are kept near their peak values throughout the low- and high-current operating levels, a desirable feature for linear power amplifiers. The composite-channel HEMT exhibits a peak transconductance of 150 mS/mm, a peak current gain cutoff frequency (f/sub T/) of 12 GHz and a peak power gain cutoff frequency (f/sub max/) of 30 GHz. For devices grown on sapphire substrate, maximum power density of 3.38 W/mm, power-added efficiency of 45% are obtained at 2 GHz. The output third-order intercept point (OIP3) is 33.2 dBm from two-tone measurement at 2 GHz.  相似文献   

8.
A high breakdown voltage and a high turn-on voltage (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P/InGaAs quasi-enhancement-mode (E-mode) pseudomorphic HEMT (pHEMTs) with field-plate (FP) process is reported for the first time. Between gate and drain terminal, the transistor has a FP metal of 1 /spl mu/m, which is connected to a source terminal. The fabricated 0.5/spl times/150 /spl mu/m/sup 2/ device can be operated with gate voltage up to 1.6 V owing to its high Schottky turn-on voltage (V/sub ON/=0.85 V), which corresponds to a high drain-to-source current (I/sub ds/) of 420 mA/mm when drain-to-source voltage (V/sub ds/) is 3.5 V. By adopting the FP technology and large barrier height (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P layer design, the device achieved a high breakdown voltage of -47 V. The measured maximum transconductance, current gain cutoff frequency and maximum oscillation frequency are 370 mS/mm, 22 GHz , and 85 GHz, respectively. Under 5.2-GHz operation, a 15.2 dBm (220 mW/mm) and a 17.8 dBm (405 mW/mm) saturated output power can be achieved when drain voltage are 3.5 and 20 V. These characteristics demonstrate that the field-plated (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P E-mode pHEMTs have great potential for microwave power device applications.  相似文献   

9.
The thermal stability of one-transistor ferroelectric nonvolatile memory devices with a gate stack of Pt-Pb/sub 5/Ge/sub 3/O/sub 11/-Ir-Poly-SiO/sub 2/-Si was characterized in the temperature range of -10/spl deg/C to 150/spl deg/C. The memory windows decrease when the temperatures are higher than 60/spl deg/C. The drain currents (I/sub D/) after programming to on state decrease with increasing temperature. The drain currents (I/sub D/) after programming to off state increase with increasing temperature. The ratio of drain current (I/sub D/) at on state to that at off state drops from 7.5 orders of magnitude to 3.5 orders of magnitude when the temperature increases from room temperature to 150/spl deg/C. On the other hand, the memory window and the ratio of I/sub D/(on)/I/sub D/(off) of the one-transistor memory device displays practically no change when the temperature is reduced from room temperature to -10/spl deg/C. One-transistor (1T) memory devices also show excellent thermal imprint properties. Retention properties of 1T memory devices degrade with increasing temperature over 60/spl deg/C.  相似文献   

10.
《Electronics letters》1993,29(2):169-170
MBE grown metamorphic In/sub 0.29/Al/sub 0.71/As/In/sub 0.3/Ga/sub 0.7/As/GaAs high electron mobility transistors (HEMTs) have been successfully fabricated. A 0.4 mu m triangular gate device showed transconductance as high as 700 mS/mm at a current density of 230 mA/mm. The measured f/sub T/ was 45 GHz and f/sub max/ was 115 GHz. These high values are, to the authors knowledge, the first reported for submicrometre metamorphic InAlAs/InGaAs/GaAs HEMTs with an indium content of 30%.<>  相似文献   

11.
We report on the dc and RF characterization of laterally scaled, Si-SiGe n-MODFETs. Devices with gate length, L/sub g/, of 80 nm had f/sub T/=79 GHz and f/sub max/=212 GHz, while devices with L/sub g/=70 nm had f/sub T/ as high as 92 GHz. The MODFETs displayed enhanced f/sub T/ at reduced drain-to-source voltage, V/sub ds/, compared to Si MOSFETs with similar f/sub T/ at high V/sub ds/.  相似文献   

12.
High-performance 0.1-/spl mu/m In/sub 0.4/AlAs/In/sub 0.35/GaAs metamorphic high-electron mobility transistors (MHEMTs) on GaAs substrate have been successfully fabricated with Ar plasma treatment. Before the gate Schottky metallization, the devices were treated with Ar plasma, which might clean and improve the surface of exposed barrier layer. The devices fabricated with Ar plasma treatment exhibited the excellent characteristics such as 50% reduction of the reverse gate leakage currents, the improved Schottky ideality factor of 1.37, high extrinsic transconductance of 700 mS/mm, and high maximum drain current density of 780 mA/mm. And the cutoff frequency f/sub T/ as high as 210 GHz was achieved. To our knowledge, this is the best reported cutoff frequency for a 0.1-/spl mu/m MHEMT with an indium content of 35% in the channel.  相似文献   

13.
GaN-based field effect transistors commonly include an Al/sub x/Ga/sub 1-x/N barrier layer for confinement of a two-dimensional electron gas (2DEG) in the barrier/GaN interface. Some of the limitations of the Al/sub x/Ga/sub 1-x/N-GaN heterostructure can be, in principle, avoided by the use of In/sub x/Al/sub 1-x/N as an alternative barrier, which adds flexibility to the engineering of the polarization-induced charges by using tensile or compressive strain through varying the value of x. Here, the implementation and electrical characterization of an In/sub x/Al/sub 1-x/-GaN high electron mobility transistor with Indium content ranging from x=0.04 to x=0.15 is described. The measured 2DEG carrier concentration in the In/sub 0.04/Al/sub 0.96/N-GaN heterostructure reach 4/spl times/10/sup 13/ cm/sup -2/ at room temperature, and Hall mobility is 480 and 750 cm/sup 2//V /spl middot/ s at 300 and 10 K, respectively. The increase of Indium content in the barrier results in a shift of the transistor threshold voltage and of the peak transconductance toward positive gate values, as well as a decrease in the drain current. This is consistent with the reduction in polarization difference between GaN and In/sub x/Al/sub 1-x/N. Devices with a gate length of 0.7 /spl mu/m exhibit f/sub t/ and f/sub max/ values of 13 and 11 GHz, respectively.  相似文献   

14.
High-performance AlGaN/GaN high electron-mobility transistors with 0.18-/spl mu/m gate length have been fabricated on a sapphire substrate. The devices exhibited an extrinsic transconductance of 212 mS/mm, a unity current gain cutoff frequency (f/sub T/) of 101 GHz, and a maximum oscillation frequency (f/sub MAX/) of 140 GHz. At V/sub ds/=4 V and I/sub ds/=39.4 mA/mm, the devices exhibited a minimum noise figure (NF/sub min/) of 0.48 dB and an associated gain (Ga) of 11.16 dB at 12 GHz. Also, at a fixed drain bias of 4 V with the drain current swept, the lowest NFmin of 0.48 dB at 12 GHz was obtained at I/sub ds/=40 mA/mm, and a peak G/sub a/ of 11.71 dB at 12 GHz was obtained at I/sub ds/=60 mA/mm. With the drain current held at 40 mA/mm and drain bias swept, the NF/sub min/,, increased almost linearly with the increase of drain bias. Meanwhile, the Ga values decreased linearly with the increase of drain bias. At a fixed bias condition (V/sub ds/=4 V and I/sub ds/=40 mA/mm), the NF/sub min/ values at 12 GHz increased from 0.32 dB at -55/spl deg/C to 2.78 dB at 200/spl deg/C. To our knowledge, these data represent the highest f/sub T/ and f/sub MAX/, and the best microwave noise performance of any GaN-based FETs on sapphire substrates ever reported.  相似文献   

15.
We achieved a maximum transconductance (g/sub m/) of 2.25 S/mm at 16 K for a 195-nm-gate In/sub 0.75/Ga/sub 0.25/As/In/sub 0.52/Al/sub 0.48/As pseudomorphic high-electron mobility transistor (PHEMT) fabricated on a [411]A-oriented InP substrate, which is the highest value ever reported for HEMTs. This PHEMT also showed a much enhanced cutoff frequency (f/sub T/) of 310 GHz at 16 K, compared with its room temperature value (245 GHz). The significantly enhanced g/sub m/ and f/sub T/ at 16 K can be attributed to the higher saturation velocity in the region "under the gate," which is caused not only by suppressing the phonon scattering, but also by suppressing the interface roughness scattering due to the "(411)A super-flat InGaAs/InAlAs interfaces" (effectively atomically flat heterointerfaces over a wafer-size area).  相似文献   

16.
Al/sub 0.4/Ga/sub 0.6/N/GaN heterostructure field-effect transistors (HFETs) with an AlGaN barrier thickness of 8 nm and a gate length (L/sub G/) of 0.06-0.2 /spl mu/m were fabricated on a sapphire substrate. We employed two novel techniques, which were thin, high-Al-composition AlGaN barrier layers and SiN gate-insulating, passivation layers formed by catalytic chemical vapor deposition, to enhance high-frequency device characteristics by suppressing the short channel effect. The HFETs with L/sub G/=0.06-0.2 /spl mu/m had a maximum drain current density of 1.17-1.24 A/mm at a gate bias of +1.0 V and a peak extrinsic transconductance of 305-417 mS/mm. The current-gain cutoff frequency (f/sub T/) was 163 GHz, which is the highest value to have been reported for GaN HFETs. The maximum oscillation frequency (f/sub max/) was also high, and its value derived from the maximum stable gain or unilateral gain was 192 or 163 GHz, respectively.  相似文献   

17.
The dc and RF characteristics of Si/SiGe n-MODFETs with buried p-well doping incorporated by ion implantation are reported. At a drain-to-source biasV/sub ds/ of +1 V devices with 140-nm gate length had peak transconductance g/sub m/ of 450 mS/mm, and maximum dc voltage gain A/sub v/ of 20. These devices also had "off-state" drain current I/sub off/ of 0.15 mA/mm at V/sub g/=-0.5 V. Control devices without p-well doping had A/sub v/=8.1 and I/sub off/=13 mA/mm under the same bias conditions. MODFETs with p-well doping had f/sub T/ as high as 72 GHz at V/sub ds/=+1.2 V. These devices also achieved f/sub T/ of 30 GHz at a drain current, I/sub d/, of only 9.8 mA/mm, compared to I/sub d/=30 mA/mm for previously published MODFETs with no p-well doping and similar peak f/sub T/.  相似文献   

18.
The DC and RF characteristics of Ga/sub 0.49/In/sub 0.51/P-In/sub 0.15/Ga/sub 0.85/As enhancement- mode pseudomorphic HEMTs (pHEMTs) are reported for the first time. The transistor has a gate length of 0.8 /spl mu/m and a gate width of 200 /spl mu/m. It is found that the device can be operated with gate voltage up to 1.6 V, which corresponds to a high drain-source current (I/sub DS/) of 340 mA/mm when the drain-source voltage (V/sub DS/) is 4.0 V. The measured maximum transconductance, current gain cut-off frequency, and maximum oscillation frequency are 255.2 mS/mm, 20.6 GHz, and 40 GHz, respectively. When this device is operated at 1.9 GHz under class-AB bias condition, a 14.7-dBm (148.6 mW/mm) saturated power with a power-added efficiency of 50% is achieved when the drain voltage is 3.5 V. The measured F/sub min/ is 0.74 dB under I/sub DS/=15 mA and V/sub DS/=2 V.  相似文献   

19.
This paper investigates the impact of source/drain impedance, gate-to-bulk capacitance, and gate resistance on device properties from 0 to 50 GHz for 0.13-/spl mu/m MOSFETs. Better device characteristics (g/sub m/ and C/sub gg/) can be found on MOSFETs with lower metal (or source/drain) resistance. But the best frequency characteristics (f/sub T/ and f/sub max/) occurred on MOSFETs with medium metal (or source/drain) resistance due to the increased interconnection capacitances. For radio frequency MOSFETs with finger-gate structure, better high-frequency behavior occurred on devices with medium finger-gate width W/sub f/ because of the tradeoff between gate (or source/drain) resistance and parasitic capacitance.  相似文献   

20.
The uniformly doped and the /spl delta/-doped In/sub 0.52/Al/sub 0.48/As/In/sub 0.6/Ga/sub 0.4/As metamorphic high-electron mobility transistors (MHEMTs) were fabricated, and the dc characteristics and the third-order intercept point (IP3) of these devices were measured and compared. Due to more uniform electron distribution in the quantum-well region, the uniformly doped MHEMT exhibits a flatter transconductance (G/sub m/) versus drain-to-source current (I/sub DS/) curve and much better linearity with higher IP3 and higher IP3-to-P/sub dc/ ratio as compared to the /spl delta/-doped MHEMT, even though the /spl delta/-doped device exhibits higher peak transconductance. As a result, the uniformly doped MHEMT is more suitable for communication systems that require high linearity operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号