首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have used nuclear magnetic resonance (NMR) to obtain the structure of an RNA "kissing" hairpin complex formed between the HIV-2 TAR hairpin loop and a hairpin with a complementary loop sequence. Kissing hairpins are important in natural antisense reactions; their complex is a specific target for protein binding. The complex has all six nucleotides of each loop paired to form a bent quasicontinuous helix of three coaxially stacked helices: two stems plus a loop-loop interaction helix. Experimental constraints derived from heteronuclear and homonuclear NMR data on 13C and 15N-labeled RNA led to a structure for the loop-loop helix with an average root-mean-square deviation of 0.83 (+/-0.10) A for 33 converged structures relative to the average structure. The loop-loop helix of the kissing complex is distorted compared to A-form RNA. Its major groove is blocked by the phosphodiester bonds that connect the first loop residue of each hairpin with its own stem, and it is flanked by two negatively charged phosphate clusters. The loop-loop helix has alternating helical twists between adjacent base-pairs. The base-pairs at the helix junctions are overwound and three base-pairs near the helix junctions adopt high propeller twists. All these changes reduce the distance needed for the bridging phosphodiester bonds connecting each stem and loop to cross the major groove of the loop-loop helix, and result in a deformed RNA helix with localized perturbations in the minor groove surface. The alternating helical twist pattern, plus other distortions in the loop-loop helix may be important for Rom protein recognition of the kissing hairpin complex.  相似文献   

2.
The hairpin ribozyme consists of two loop-carrying duplexes (called A and B) that are adjacent arms of a four-way junction in its natural context in the viral RNA. We have shown previously that the activity of the ribozyme is strongly influenced by the structure adopted by the junction. In this study, we have used fluorescence resonance energy transfer to analyze the conformation and folding of the isolated four-way junction. Like other four-way RNA junctions, in the absence of added metal ions this junction adopts a square configuration of coaxially stacked arms, based on A on D and B on C stacking. Upon addition of magnesium ions, the junction undergoes an ion-induced transition to an antiparallel conformation. The data are consistent with folding induced by the binding of a single ion, with an apparent association constant in the range of 2000 M-1. Other divalent metal ions (calcium or manganese) can also induce this change in structure; however, sodium ions are unable to substitute for these ions, and are slightly inhibitory with respect to the transition. The loop-free hairpin junction adopts the same stacking conformer as the full ribozyme, but forms a more symmetrical X-shaped structure. In addition, the apparent stoichiometry of structural ion binding is lower for the isolated junction, and the affinity is considerably lower.  相似文献   

3.
An NMR-based structure is presented for a 20 mer hairpin model of the SL3 stem-loop from the HIV-1 packaging signal. The stem has an A-family structure. However, the GGAG tetraloop appears to be flexible with the second (G10) and fourth (G12) bases extruded from the normal stacking arrangement. The A-base (A11) occupies a cavity large enough for it to jump rapidly between stacking upon G9 (in the loop) and G13 (from the base-pair adjacent to the loop). The H-bonding loci of G10, A11, and G12 are unoccupied in the free RNA structure. The loop should be easily adaptable to binding by the HIV-1 nucleocapsid protein or loop receptors.  相似文献   

4.
The thermodynamic stability of RNA hairpin loops has been a subject of considerable interest in the recent past (Wimberly et al., 1991). There have been experimental reports indicating that the hairpins with a C(UUCG)G loop sequence are thermodynamically very stable (Wimberly et al., 1991). We used the solution structure of GGAC(UUCG)GUCC (Cheong et al., 1990; Varani et al., 1991) as the starting conformation in our attempt to understand its thermodynamic stability. We carried out molecular dynamics/free energy simulations to understand the basis for the destabilization of the C(UUCG)G loop by mutating cytosine (C7)-->uracil. Because of the limited length of simulation and the presence of kinetic barriers (solvent intervention) to the uracil-->cytosine mutation, all of our computed free energy differences are based on multiple forward simulations. Based on these calculations we find that the cytosine-->uracil mutation in the loop destabilizes it by approximately 1.5kcal/mol relative to that of the reference state, an A-form RNA but with cytosine (C7) looped out. This is the same sign and magnitude as that observed in the thermodynamic studies carried out by Varani et al.(1991). We have carried out free energy component analysis to understand the effect of mutating the cytosine residue to uracil on the thermodynamic stability of the C(UUCG)G hairpin loops. Our calculations show that the most significant contribution to the stability is from the phosphate group linking U5 and U6, which favors the cytosine residue over uracil by about 6.0 kcal/mol. The residues U5, U6, and G8 in the loop region also contribute significantly to the stability. The contributions from the salt and solvent compensate each other, indicating the dynamic nature of interactions of the environment with the nucleic acid system and the coupling between these two components.  相似文献   

5.
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequences of the type GGXANmAYCC, where XY is the set of four Watson-Crick base pairs and the underlined loop sequences are three to nine nucleotides. A nearest neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C is dependent upon loop size and closing base pair. The model previously developed to predict the stability for RNA hairpin loops (n > 3) includes contributions from the size of the loop, the identity of the closing base pair, the free energy increment (deltaGo(37mm)) for the interaction of the closing base pair with the first mismatch and an additional stabilization term for GA and UU first mismatches [Serra, M. J., Axenson, T. J., & Turner, D. H. (1994) Biochemistry 33, 14289]. The results presented here allow improvements in the parameters used to predict RNA hairpin stability. For hairpin loops of n = 4-9, deltaGo(37iL)(n) is 4.9, 5.0, 5.0, 5.0, 4.9, and 5.5 kcal/mol, respectively, and the penalty for hairpin closure by AU or UA is +0.6 kcal/mol. deltaGo(37iL)(n) is the free energy for initiating a loop of n nucleotides. The model for predicting hairpin loop stability for loops larger than three becomes deltaGo(37L)(n) = deltaGo(37iL)(n) + deltaGo(37mm) + 0.6(if closed by AU or UA) - 0.7(if first mismatch is GA or UU). Hairpin loops of three are modeled as independent of loop sequence with deltaGo(37iL)(3) = 4.8 and the penalty for AU closure of +0.6 kcal/mol. Thermodynamic parameters for hairpin formation in 1 M NaCl for 11 naturally occurring RNA hairpin sequences are reported. The model provides good agreement with the measured values for both T(M) (within 10 degrees C of the measured value) and deltaGo(37) (within 0.8 kcal/mol of the measured value) for hairpin formation. In general, the nearest neighbor model allows prediction of RNA hairpin stability to within 5-10% of the experimentally measured values.  相似文献   

6.
7.
8.
Metal ion requirements for RNA binding, cleavage, and ligation by the hairpin ribozyme have been analyzed. RNA cleavage is observed when Mg2+, Sr2+, or Ca2+ are added to a 40 mM Tris-HCl buffer, indicating that these divalent cations were capable of supporting the reaction. No reaction was observed when other ions (Mn2+, Co2+, Cd2+, Ni2+, Ba2+, Na+, K+, Li+, NH4+, Rb+, and Cs+) were tested. In the absence of added metal ions, spermidine can induce a very slow ribozyme-catalyzed cleavage reaction that is not quenched by chelating agents (EDTA and EGTA) that are capable of quenching the metal-dependent reaction. Addition of Mn2+ to a reaction containing 2 mM spermidine increases the rate of the catalytic step by at least 100-fold. Spermidine also reduces the magnesium requirement for the reaction and strongly stimulates activity at limiting Mg2+ concentrations. There are no special ionic requirements for formation of the initial ribozyme-substrate complex--analysis of complex formation using native gels and kinetic assays shows that the ribozyme can bind substrate in 40 mM Tris-HCl buffer. Complex formation is inhibited by both Mn2+ and Co2+. Ionic requirements for the ribozyme-catalyzed ligation reaction are very similar to those for the cleavage reaction. We propose a model for catalysis by the hairpin ribozyme that is consistent with these findings. Formation of an initial ribozyme-substrate complex occurs without the obligatory involvement of divalent cations. Ions (e.g., Mg2+) can then bind to form a catalytically proficient complex, which reacts and dissociates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
The stability of all single-base mismatched pairs between a peptide nucleic acid 11-mer and its complementary DNA has been quantified in terms of their melting temperature and compared with the limited amount of data published to date. The strength of the interaction was determined by an automated affinity-electrophoretic approach permitting the visualization, in real time, of hybridization between a physically immobilized peptide nucleic acid and a complementary DNA migrating in an electric field. The dissociation constants are in the range of 10(-7) M (for mismatches) to 10(-10) M (for fully complementary DNA), which are in excellent agreement with solution studies. These and other thermodynamic constants can be accurately, rapidly, and reproducibly measured in this system at concentrations approaching dissociation conditions by using fluorescently labeled DNA in conjunction with commercial DNA sequencers. The stability of single-base mismatched peptide nucleic acid-DNA duplexes depends both on the position as well as on the chemical nature of the mismatch. The stability is at a minimum when the mutation is positioned 4 bases from either terminus (a loss of 20 degreesC or more in the melting temperature) but regains substantial stability when the mismatch is at the center of the duplex. The most stable mismatched pairs are G:T and T:T whereas destabilization is maximal for A:A and G:G. These observations are of significance in the design of probes for detecting mutations by hybridization.  相似文献   

11.
12.
The natural form of the hairpin ribozyme consists of a four-way RNA junction of which the single-stranded loop-carrying helices are adjacent arms. The junction can be regarded as providing a framework for constructing the active ribozyme, and the rate of cleavage can be modulated by changing the conformation of the junction. We find that the junction-based form of the hairpin ribozyme is active in magnesium, calcium, or strontium ions, but not in manganese, cadmium, or sodium ions. Using fluorescence resonance energy transfer experiments, we have investigated the global structure of the ribozyme. The basic folding of the construct is based on pairwise helical stacking, so that the two loop-carrying arms are located on opposite stacked helical pairs. In the presence of magnesium, calcium, or strontium ions, the junction of the ribozyme undergoes a rotation into a distorted antiparallel geometry, creating close physical contact between the two loops. Manganese ions induce the same global folding, but no catalytic activity; this change in global conformation is therefore necessary but not sufficient for catalytic activity. Fitting the dependence of the conformation on ionic concentration to a two-state model suggests that cooperative binding of two ions is required to bring about the folding. However, further ion binding is required for cleavage activity. Cobalt hexammine ions also bring about global folding, while spermidine generates a more symmetrical form of the antiparallel structure. Cadmium ions generate a different folded form, interpreted in terms of close loop-loop association while the junction is unfolded. Sodium ions were unable to induce any folding of the ribozyme, which remained slightly parallel. These results are consistent with a folding process induced by the binding of two group IIA metal ions, distributed between the junction and the loop interface.  相似文献   

13.
Active site-directed affinity labeling was utilized to elucidate peptide sequences at the binding site for sulfuryl acceptors in rat hepatic aryl sulfotransferase (AST) IV (also known as tyrosine-ester sulfotransferase, EC 2.8.2.9). The affinity labeling reagent, N-bromoacetyl-4-hydroxyphenylamine, was designed on the basis of substrate specificity studies with para-substituted phenols, utilization of a bromoacetamido group for reactivity with active site amino acid residues and its similarity to acetaminophen, a known substrate for aryl (phenol) sulfotransferases. AST IV utilized N-bromoacetyl-4-hydroxyphenylamine as a substrate with kinetic constants that compared favorably to those obtained with acetaminophen. Incubation of AST IV with N-bromoacetyl-4-hydroxyphenylamine at pH 7.0 in the absence of PAPS and other substrates resulted in an irreversible inactivation of the enzyme that was both time- and concentration-dependent. [14C]-N-bromoacetyl-4-hydroxyphenylamine was synthesized and used to analyze the regions of protein sequence that were involved in the binding of the affinity label. AST IV was incubated with [14C]-N-bromoacetyl-4-hydroxyphenylamine, hydrolyzed with endoproteinase Lys-C and the labeled peptides were purified by HPLC. Control incubations of AST IV with the affinity label in the presence of 4-propylphenol and PAP were utilized to ascertain the specificity of the interaction. Sequence analysis of the labeled peptides, carried out by automated Edman degradation, revealed labeling sites on cysteine (Cys-232, Cys-283 and Cys-289) and lysine (Lys-286) residues near the C-terminus of the protein. The locations of these labeling sites were further evaluated both by sequence-alignment with other sulfotransferases and by theoretical calculations on predicted secondary structure.  相似文献   

14.
The iron responsive element (IRE) RNA hairpin contains a conserved six-nucleotide loop. The NMR structure of this loop showed that the positions of four of its bases are not tightly constrained, while the remaining two are hydrogen-bonded [Laing, L. G., and Hall, K. B. (1996) Biochemistry 35, 13586]. To investigate the flexibility of the RNA in the loop and in the stem, 13C NMR relaxation methods have been used to describe the dynamics of the purine bases. IRE hairpins containing [13C]guanosine and [13C]adenosine are used in NMR experiments to measure T1, T1rho, and NOE values of the bases as a function of temperature (20-37 degreesC). Data are analyzed using the Lipari-Szabo model-free formalism [Lipari, G., and Szabo, A. (1982) J. Am. Chem. Soc. 104, 4546] to determine order parameters and time scales of the motion. Results indicate that the purine bases in the stem have order parameters that are independent of temperature, although they show evidence of both fast (6-40 ps) motions and slower motions at 37 degreesC. The three purines in the loop exhibit increasingly complex motions with long (nanoseconds) correlation times as the temperature increases, suggesting that the loop structure has become disordered.  相似文献   

15.
16.
The three-dimensional structure of the hairpin formed by d(ATCCTA-GTTA-TAGGAT) has been determined by means of two-dimensional NMR studies, distance geometry and molecular dynamics calculations. The first and the last residues of the tetraloop of this hairpin form a sheared G-A base pair on top of the six Watson-Crick base pairs in the stem. The glycosidic torsion angles of the guanine and adenine residues in the G-A base pair reside in the anti and high- anti domain ( approximately -60 degrees ) respectively. Several dihedral angles in the loop adopt non-standard values to accommodate this base pair. The first and second residue in the loop are stacked in a more or less normal helical fashion; the fourth loop residue also stacks upon the stem, while the third residue is directed away from the loop region. The loop structure can be classified as a so-called type-I loop, in which the bases at the 5'-end of the loop stack in a continuous fashion. In this situation, loop stability is unlikely to depend heavily on the nature of the unpaired bases in the loop. Moreover, the present study indicates that the influence of the polarity of a closing A.T pair is much less significant than that of a closing C.G base pair.  相似文献   

17.
The secondary structure of an RNA aptamer, which has a high affinity for the Escherichia coli MetJ repressor protein, has been mapped using ribonucleases and with diethyl pyrocarbonate. The RNA ligand is composed of a stem-loop with a highly structured internal loop. Interference modification showed that the bases within the internal loop, and those directly adjacent to it, are important in the binding of the RNA ligand to MetJ. Most of the terminal stem-loop could be removed with little effect on the binding. Ethylation interference suggests that none of the phosphate groups are absolutely essential for tight binding. The data suggest that the MetJ binding site on the aptamer is distinct from that of the natural DNA target, the 8-base pair Met box.  相似文献   

18.
Self-splicing of the Tetrahymena group I intron is attenuated by an rRNA stem-loop in the 5' exon, which competes with formation of the P1 splice site helix. The equilibrium between the P1 and P(-1) stem-loops is influenced by rRNA sequences upstream and downstream of the intron. To investigate the mechanism of this conformational switch, internal deletions and point mutations were introduced in the second rRNA stem-loop upstream of the 5' splice site. Nuclease protection, native gel electrophoresis, and self-splicing results show that this helix is important for maintaining self-splicing activity. Co-axial base stacking of adjacent helices in the 5' exon is proposed to enable exchange between inactive and active conformations of the pre-rRNA.  相似文献   

19.
Plant acetohydroxy acid isomeroreductase is a stable homodimer which catalyzes in the presence of magnesium an alkyl migration followed by a NADPH-dependent reduction. Since the enzyme exhibits no kinetic cooperativity either for its cofactor (NADPH and magnesium) or for its substrates, the reason for dimerization of this enzyme was not obvious. Recently, crystallographic studies [Biou, V., et al. (1997) EMBO J. 16, 3405-3415] revealed that the loop of residues 422-431 plays a major part in the dimer interface. To understand the role of the quaternary structure of the enzyme, we have deleted residues 423-430 and substituted Phe 431 for serine. This mutant was further overproduced in Escherichia coli, purified to homogeneity, and characterized. Gel filtration and thermodynamic experiments disclosed that this mutant behaves as an active monomer with reduced thermal stability. Furthermore, kinetic and fluorescence experiments showed that the behavior of the monomer with respect to magnesium was greatly altered. These results demonstrate the function of the quaternary structure of plant acetohydroxy acid isomeroreductase in the stabilization of the tertiary structure but also in the stabilization of a high-affinity magnesium binding site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号