最小交叉熵阈值法(MCET) 在二级阈值中是有效的, 但在多极阈值的穷尽搜索中却要付出昂贵的时间代价. 鉴于此, 提出一种基于遗传算法(GA) 的MCET选择方法: 在执行图像分割(IS) 任务之前, 先将IS 转化为在一定约束 条件下待优化的问题; 在寻找待优化问题最优解的计算过程中引入一种回归设计技巧以存储中间结果; 使用这种回 归设计技巧, 在一组标准测试图像上利用GA搜索待优化问题的最优解. 实验结果表明, 利用所提出的方法获得的多 个阈值非常接近于穷尽搜索获得的结果.
相似文献为确定??-means 等聚类算法的初始聚类中心, 首先由样本总量及其取值区间长度确定对应维上的样本密度统计区间数, 并将满足筛选条件的密度峰值所在区间内的样本均值作为候选初始聚类中心; 然后, 根据密度峰值区间在各维上的映射关系建立候选初始聚类中心关系树, 进一步采用最大最小距离算法获得初始聚类中心; 最后为确定最佳聚类数, 基于类内样本密度及类密度建立聚类有效性评估函数. 针对人工数据集及UCI 数据集的实验结果表明了所提出算法的有效性.
相似文献针对卡方故障检测方法对软故障的检测性能较差, 甚至会导致滤波器发散的问题, 提出一种基于证据推理的联合故障检测方法. 将组合导航中的各子滤波器作为证据, 利用每个子滤波器的状态及协方差构造联合故障检测函数, 并利用联合故障检测函数的概率分布计算基本置信指派, 再将多个证据按D-S 规则进行融合, 根据融合结果进行故障检测. 仿真结果表明, 所提出的方法对硬故障的检测性能与卡方故障检测性能相当, 但对软故障的检测性能要优于卡方故障检测, 可提高组合导航系统的可靠性和精度.
相似文献提出一种面向演进数据流数据的分类方法, 在有效利用相邻演进窗内数据间相似性信息的基础上, 通过引入反例信息, 构建一种面向演进数据流的增强型演进分类器优化目标函数, 从而推导出面向演进数据流的分类方法.该方法在保有最大间隔原则和全局优化特性的同时, 充分考虑了反例信息对待解分类平面的影响. 在模拟和真实数据集上进行实验, 结果表明了所提出方法的有效性.
相似文献定义了语言??数及其模糊熵, 提出了基于模糊熵和证据推理的多准则决策方法, 以解决准则权系数信息不完全确定的语言??数多准则决策问题. 所提方法通过建立基于语言??数模糊熵的线性规划模型来得到准则的最优权系数, 利用证据推理算法确定方案的综合准则值, 进而得出最优方案. 最后通过实例验证了所提出方法的有效性和可行性.
相似文献以改进的流形距离为相似度测度, 结合人工蜂群算法, 提出一种二阶段聚类算法. 首先根据局部密度、最大最小距离和近邻选择对数据集初步归类并得到簇代表点; 然后将聚类归属为优化问题, 通过改进的蜂群算法对簇代表点及没归类的样本点较快地搜索到最优聚类中心, 同时根据流形距离的全局一致性特征, 对样本进行精确的类别划分; 最后将两阶段算法综合归类. 实验结果表明, 所提出的算法可以获得良好的聚类效果.
相似文献由于不确定数据流中一般隐藏着概念漂移问题, 对其进行有效分类存在着很多困难. 为此, 提出一种基于自适应快速决策树的算法. 该算法基于一般决策树算法的原理, 以自适应学习规则计算信息增益, 以无标记情景学习拆分原理检测不确定数据流中的不确定数值属性, 通过自适应快速决策树节点的拆分方法将不确定数值属性转化为不确定分类属性, 以实现对不确定数据流的有效分类, 进而有效检测到其中隐含的概念漂移现象. 仿真结果验证了所提出方法的可靠性.
相似文献演化聚类算法(ECM) 是一种有效的在线聚类算法, 能够根据输入数据实时调整聚类. 但是, 该聚类算法依赖于预先设置的最大距离阈值, 而且对数据输入次序敏感. 针对这些问题, 提出一种基于自适应学习的演化算法(SALECM), 在无法获取数据先验知识的情况下, 无需人为预先定义参数, 可自适应地调整聚类. 实验结果表明, 与 ECM相比, SALECM可提高在线聚类的自适应性能, 也能在一定程度上缓解数据输入次序对算法的影响.
相似文献线性判别分析(LDA) 作为一种经典的特征提取方法被广泛地加以研究和运用, 然而LDA作为全局判别准则在一定程度上忽视了样本空间的局部结构和局部信息. 为此, 通过引入局部加权均值(LWM)并结合最大间距判别分析(MMC) 提出了具有一定局部学习能力的有监督的特征提取方法—–基于局部加权均值的最大间距判别分析(LBMMC). 算法结合了QR分解技术, 提高了其执行效率, 并通过在数据集上的测试结果表明了该算法的有效性.
相似文献针对K-means 聚类算法过度依赖初始聚类中心、局部收敛、稳定性差等问题, 提出一种基于变异精密搜索的蜂群聚类算法. 该算法利用密度和距离初始化蜂群, 并根据引领蜂的适应度和密度求解跟随蜂的选择概率P; 然后通过变异精密搜索法产生的新解来更新侦查蜂, 以避免陷入局部最优; 最后结合蜂群与粗糙集来优化K-means. 实验结果表明, 该算法不仅能有效抑制局部收敛、减少对初始聚类中心的依赖, 而且准确率和稳定性均有较大的提高.
相似文献针对面板数据聚类研究存在的问题及现实需要, 构建面板数据下新的灰色指标关联聚类(AGRA) 模型. 构造所有指标不同对象下时间序列的累加生成序列, 用生成序列的平均生成速率表征原序列的动态变化趋势; 单个指标所有对象的平均生成速率构成该指标的平均生成速率序列, 从而综合偏离、差离和分离的三重差异信息, 构建指标关联分析模型; 提出面板数据下Mean-AGRA灰色指标关联聚类算法, 并应用于我国区域生态环境评价指标的降维问题. 分析结果验证了所提出模型的实用性和有效性.
相似文献针对多视角聚类任务如何更好地实现视角间的合作之挑战, 提出一种新的视角融合策略. 该策略首先为每个视角设置一个划分, 然后通过自适应学习获取一个融合权重矩阵对每个视角的划分进行自适应融合, 最终利用视角集成方法得到全局划分结果. 将上述策略应用到经典的FCM(Fuzzy ??-means) 模糊聚类框架, 提出相应的多视角模糊聚类算法. 在模拟数据集和UCI 数据集上的实验结果均显示, 所提出的算法较几种相关聚类算法在应对多视角聚类任务时具有更好的适应性和更好的聚类性能.
相似文献针对流数据的实时、有序和维数高等特点, 提出一种基于多种群协同微粒群优化的流数据聚类算法. 该算法利用变量分而治之的思想, 多个种群协同优化多个类中心, 进而求出问题完整的类中心集合. 给出一种类中心变化趋势的预估策略, 以快速追踪环境变化. 为防止多个子微粒群同时优化一个类中心, 提出一种相似子微粒群的合并策略. 最后将所提出的算法用于多个数据集, 实验结果验证了算法的有效性.
相似文献