共查询到16条相似文献,搜索用时 62 毫秒
1.
基于AR模型和神经网络的柴油机故障诊断 总被引:1,自引:1,他引:0
建立了一种基于AR与RBF神经网络结合的诊断模型,模拟柴油机气阀漏气、气门间隙异常等故障,采用NI公司PCI-4472采集卡在LabVIEW7.1平台上开发了柴油机缸盖振动信号采集分析与诊断系统。首先,对利用该系统采集的缸盖振动信号样本建立AR模型并进行AR谱估计,从中提取5个特征参数,然后利用RBF神经网络进行故障模式识别。结果表明,该诊断方法具有较高的精度,便于故障在线监测与诊断系统的开发。 相似文献
2.
滚动轴承是旋转机械的重要典型零部件,本文将自回归(AR)模型应用于滚动轴承故障诊断,对其时域信号建立自回归模型,计算出其AR功率谱,并和经典功率谱进行比较,进而判断轴承的工作状态。实验结果表明,该方法能简单有效地识别滚动轴承故障。 相似文献
3.
4.
基于BP神经网络的滚动轴承故障诊断研究 总被引:4,自引:0,他引:4
通过对滚动轴承振动信号的分析处理,提取能够反映轴承运行状态的特征量作为BP神经网络的输入,并用BP算法对该网络进行训练,利用神经网络的智能性来判断轴承所属的故障类型。仿真结果表明,该方法实用有效。 相似文献
5.
6.
基于径向基函数神经网络的柴油机故障诊断 总被引:17,自引:0,他引:17
提出一种应用径向基函数(RBF)神经网络解决故障诊断问题的方法,并将其应用于柴油机故障诊断与识别。在RBF神经网络中采用了一种减聚类的学习算法来确定径向基函数的相应参数,从而使神经网络结构得到优化。实例仿真结果表明,RBF神经网络学习收敛较快,对故障识别性能好。 相似文献
7.
8.
基于小波包和AR谱分析的滚动轴承故障诊断 总被引:1,自引:0,他引:1
针对滚动轴承故障振动信号的非平稳性,提出了一种基于小波包和AR谱分析的滚动轴承故障诊断方法.该方法对系统输出信号进行小波包分解,然后进行重构,再对重构信号进行AR谱分析,从而提取出故障特征频率.试验结果表明,这种方法能有效地提取滚动轴承的故障特征,诊断其故障. 相似文献
9.
基于谱峭度和AR模型的滚动轴承故障诊断 总被引:1,自引:0,他引:1
提出基于自回归(Autoregressive,简称AR)预测滤波的谱峭度分析方法,将其应用于滚动轴承的早期故障诊断。通过结合AR预测滤波器提取轴承故障信号共振衰减成分的特性,利用谱峭度方法对AR预测滤波器滤波后的信号进行处理,实现了滚动轴承早期微弱故障的识别。通过滚动轴承的疲劳全寿命加速实验获取滚动轴承的自然故障信号,克服了传统轴承故障诊断人工加工故障的不足。通过试验数据的分析表明,基于AR预测滤波的谱峭度方法不仅能够消除干扰成分提取故障特征,还能增加谱峭度方法的稳定性。 相似文献
10.
11.
研究了小波包分析与人工神经网络结合起来应用于轴承故障诊断的问题。采用小波包分析对其提取频域能量特征向量,利用径向基函数神经网络完成滚动轴承故障诊断。 相似文献
12.
13.
基于关联维数的滚动轴承故障诊断的研究 总被引:3,自引:1,他引:3
针对滚动轴承系统产生的非线性振动信号的特点,提出用关联维数来描述轴承振动信号的工作状态,进而对其进行故障诊断的方法。同时详细讨论了关联维数的计算方法,并对由轴承系统产生的非线性振动信号进行了关联维数的定量计算。实验表明,滚动轴承不同工作状态由不同的动力学机理产生,其关联维数明显不同。以关联维数作为滚动轴承的工作状态监测的依据,可以为提高滚动轴承故障诊断的准确率提供了一种有效的新方法。 相似文献
14.
BP神经网络在滚动轴承早期故障诊断中的应用 总被引:4,自引:1,他引:4
滚动轴承是旋转机械中应用普扁而又易损的元件之一,其故障在机械故障中占有很大的比例.因此,轴承故障诊断、特别是早期诊断很受重视.本文将神经网络应用于轴承早期故障诊断,简要说明了BP神经网络的基本原理、算法及特点,介绍了实验数据的分析过程和参数选择原则.实验结果表明,选择适当的网络结构进行训练、学习和检验,可以把良好轴承、内环缺陷轴承、外可缺陷轴承、滚子缺陷轴承及具有三种综合缺陷的轴承区分开来,并能初步估计出缺陷的大小. 相似文献
15.
16.
基于神经网络的滚动轴承在线状态监测与诊断系统 总被引:2,自引:0,他引:2
本文介绍一种适合于大中企业关键机组或机组群滚动轴承运行状态在线监测与故障诊断的仪器系统设计原理,并提出了基于神经网络进行故障评价的系数自修正策略,给出了系统工业现场实时运行结果。 相似文献