首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Force development in skeletal muscle is driven by an increase in myoplasmic free [Ca2+]i ([Ca2+]i) due to Ca2+ release from the sarcoplasmic reticulum (SR). The magnitude of [Ca2+]i elevation during stimulation depends on: (a) the rate of Ca2+ release from the SR; (b) the rate of Ca2+ uptake by the SR; and (c) the myoplasmic Ca2+ buffering. We have used fluorescent Ca2+ indicators to measure [Ca2+]i in intact, single fibres from mouse and Xenopus muscles under conditions where one or more of the above factors are changed. The following interventions resulted in increased tetanic [Ca2+]i: beta-adrenergic stimulation, which potentiates the SR Ca2+ release; application of 2.5-di(tert-butyl)-1,4-benzohydroquinone, which inhibits SR Ca2+ pumps; application of caffeine, which facilitates SR Ca2+ release and inhibits SR Ca2+ uptake; early fatigue, where the rate of SR Ca2+ uptake is reduced; acidosis, which reduces both the myoplasmic Ca2+ buffering and the rate of SR Ca2+ uptake. Reduced tetanic [Ca2+]i was observed in late fatigue, due to reduced SR Ca2+ release, and in alkalosis, due to increased myoplasmic Ca2+ buffering. Force is monotonically related to [Ca2+]i but depends also on the myofibrillar Ca2+ sensitivity and the maximum force cross-bridges can produce. This is clearly illustrated by changes of intracellular pH where, despite a lower tetanic [Ca2+]i, tetanic force is higher in alkalosis than acidosis due to increases of myofibrillar Ca2+ sensitivity and maximum cross-bridge force.  相似文献   

2.
We have previously reported that angiotensin II (ANG II) induces oscillations in the cytoplasmic calcium concentration ([Ca2+]i) of pulmonary vascular myocytes. The present work was undertaken to investigate the effect of ANG II in comparison with ATP and caffeine on membrane currents and to explore the relation between these membrane currents and [Ca2+]i. In cells clamped at -60 mV, ANG II (10 microM) or ATP (100 microM) induced an oscillatory inward current. Caffeine (5 mM) induced only one transient inward current. In control conditions, the reversal potential (Erev) of these currents was close to the equilibrium potential for Cl- ions (Ecl = -2.1 mV) and was shifted towards more positive values in low-Cl- solutions. Niflumic acid (10-50 microM) and DIDS (0.25-1 mM) inhibited this inward current. Combined recordings of membrane current and [Ca2+]i by indo-1 microspectrofluorimetry revealed that ANG II- and ATP-induced currents occurred simultaneously with oscillations in [Ca2+]i whereas the caffeine-induced current was accompanied by only one transient increase in [Ca2+]i. Niflumic acid (25 microM) had no effect on agonist-induced [Ca2+]i responses, whereas thapsigargin (1 microM) abolished both membrane current and the [Ca2+]i response. Heparin (5 mg/ml in the pipette solution) inhibited both [Ca2+]i responses and membrane currents induced by ANG II and ATP, but not by caffeine. In pulmonary arterial strips, ANG II-induced contraction was inhibited by niflumic acid (25 microM) or nifedipine (1 microM) to the same extent and the two substances did not have an additive effect. This study demonstrates that, in pulmonary vascular smooth muscle, ANG II, as well as ATP, activate an oscillatory calcium dependent chloride current which is triggered by cyclic increases in [Ca2+]i and that both oscillatory phenomena are primarily IP3-mediated. It is suggested that ANG II-induced oscillatory chloride current could depolarise the cell membrane leading to activation of voltage-operated Ca2+ channels. The resulting Ca2+ influx contributes to the component of ANG II-induced contraction that is equally sensitive to chloride or calcium channel blockade.  相似文献   

3.
Two of the most significant characteristics of failing human myocardium are an increased diastolic [Ca2+]i and a prolonged diastolic relaxation. These abnormalities are more pronounced at higher frequencies of stimulation and may be caused by an altered Ca2+ resequestration into the sarcoplasmic reticulum (SR). The force-frequency relationship was determined in multicellular preparations obtained from non-failing (n=6) and failing human myocardium (n=11). The active force in non-failing tissue increased as a function of the frequency of stimulation. In failing myocardium, an increase in frequency of stimulation (>1 Hz) was accompanied by a decrease in active force. Changes in the frequency of stimulation and active force were also associated with changes in intracellular calcium concentrations. The diastolic force in failing myocardium was augmented following an increase in frequency of stimulation, whereas in non-failing tissue, no increase in diastolic force was observed. Associated with the increase in diastolic force was an increase in intracellular diastolic calcium concentrations. The SR Ca2+ ATPase activity was reduced in failing compared to non-failing myocardium. SR Ca2+ ATPase was positively correlated with diastolic force in non-failing myocardium. The relationship between Ca2+ ATPase activity at 1 micromol/l [Ca2+] and active force between 0.5 and 2.0 Hz was different between failing and non-failing myocardium. The diastolic force demonstrate an inverse relationship with the SR Ca2+ ATPase activity in failing myocardium. These data suggest that a reduction in SR Ca2+ ATPase activity contributes to the impairment in both systolic and diastolic function of failing human hearts.  相似文献   

4.
Mature myocardium utilizes calcium released by the sarcoplasmic reticulum (SR) for cell contraction. Transient exposure of mature myocytes to caffeine is known to directly trigger Ca2+ release from the SR. In contrast, neonatal rabbit heart cells rely on transsarcolemmal Ca2+ influx for tension generation. SR function is decreased in immature heart and appears to play a minimal role as a calcium source. Accordingly, we hypothesized that neonatal rabbit myocytes would not respond to a caffeine pulse. Isolated neonatal and adult myocytes were paced to load the SR with calcium and then exposed to a 1-s pulse of 10 mM caffeine. As previously described, adult myocytes exhibited a brisk contraction in response to caffeine. Unexpectedly, neonatal myocytes also exhibited a similar, brisk response. These caffeine-induced contractions were not dependent on extracellular Ca2+ but were dependent upon the loading of SR Ca2+ stores. When SR Ca2+ stores were depleted by exposure to caffeine, mature myocytes exhibited only small, slow contractions in response to electrical field stimulation. Replenishing the SR Ca2+ stores resulted in normal, brisk contractions. In contrast, electrically stimulated contractions in immature myocytes were largely unaffected by caffeine-induced SR depletion. Thus, although neonatal myocytes are capable of loading and releasing calcium from the SR, such SR calcium release is not normally required for contraction in the developing heart. The minor role of SR Ca2+ release in immature rabbit heart may not result from immaturity of the SR, but rather from an inadequate mechanism to trigger SR calcium release.  相似文献   

5.
Extracellular Na+ concentration ([Na+]e) significantly effects the regulation of myogenic tone in isolated blood vessels. We examined the effect of small changes in [Na+]e on simultaneous changes in stretch-activated myogenic tone in rabbit facial vein and 45Ca2+ unidirectional influx and net uptake. Decreasing [Na+]e from 150 to 120 mmol/l augmented myogenic tone (control: 3.15 +/- 0.27 mN, n = 22) by 89 +/- 29%, while raising [Na+]e to 165 mmol/l attenuated myogenic tone to 80 +/- 2% of control. Changes in myogenic tone induced by alterations in [Na+]e were not accompanied by proportional changes in 45Ca2+ net uptake. 45Ca2+ unidirectional influx per unit of wall force (10.2 +/- 1.0 pmol/mg per mN force, n = 22, control) was decreased to 6.1 +/- 0.6 pmol/mg per mN (n = 20, P < 0.05) and increased to 21.0 +/- 2.5 pmol/mg per mN (n = 14, P < 0.05) when [Na+]e was 120 or 165 mmol/l, respectively, suggesting that decreasing [Na+]e is related to an increased sensitivity to calcium. We conclude that, in the rabbit facial vein, the sensitivity of myogenic tone to changes in [Na+]e may reflect changes in the sensitivity of smooth muscle to Ca2+ through a change in mechanoreceptor sensitivity.  相似文献   

6.
OBJECTIVE: Earlier studies have shown a depression in the sarcoplasmic reticular (SR) Ca2+ uptake and gene expression in Ca2+ pump ATPase protein in congestive heart failure subsequent to myocardial infarction. It is the objective of this study to understand further the mechanisms of depressed SR Ca2+ pump activity in the failing heart. METHODS: Heart failure in rats was induced by occluding the left coronary artery for 16 weeks and the viable left ventricle was processed for the isolation of SR membranes. Sham-operated animals were used as control. The characteristics of SR Ca2+ pump ATPase in the presence of different concentrations of K+, Ca2+ and ATP were examined and the purity of these membranes was monitored by determining the marker enzyme activities. In addition to measuring changes in cyclic adenosine monophosphate (cAMP) protein kinase and Ca(2+)-calmodulin induced phosphorylation, alterations in SR phospholipid composition as well as sulfhydryl (SH) group content were investigated. RESULTS: Ca(2+)-stimulated ATPase activity, unlike Mg(2+)-ATPase activity, was depressed in the left ventricular SR from failing hearts as compared to control. The decrease in Ca(2+)-stimulated ATPase activity was seen at different concentrations of Ca2+, K+ and ATP but no changes in the affinities of the enzyme for Ca2+ and ATP were evident. The SR Ca(2+)-stimulated ATPase activities in the presence of both cAMP-dependent protein kinase and Ca(2+)-calmodulin were markedly decreased in the failing hearts when compared to control preparations. Furthermore, the 32P incorporation in the presence of cAMP-dependent protein kinase or Ca(2+)-calmodulin was also reduced in the experimental heart SR membranes. The phospholipid composition of the SR membranes from the failing heart was markedly altered. No changes in SH-group or the degree of cross contamination with other membranes were apparent in the failing heart SR. CONCLUSIONS: These results suggest that abnormalities in membrane phospholipid composition and phosphorylation of the enzyme may partly explain the observed depression in SR Ca2+ pump ATPase activity in heart failure following myocardial infarction.  相似文献   

7.
The amount of cardiac sarcoplasmic reticulum in rat hearts was estimated by comparing marker activities in the isolated SR fraction with their activities in the homogenate. Four distinguishable markers were measured: the oxalate-supported rate of calcium uptake, the calcium oxalate capacity, 3H-ryanodine binding and the thapsigargin equivalents. The calcium uptake rate and capacity and thapsigargin equivalents were determined in the presence and absence of SR Ca2+ channel blockade with high concentrations of ryanodine. All of these activities are believed to be located only in the SR. However, the calculation of the heart content of SR was somewhat different for the four markers. The calcium uptake rate gave 8.4 mg SR protein per g tissue in the absence of ryanodine, and 9.6 mg per g in its presence; calcium oxalate capacity gave similar numbers, 9.9 mg per g in the absence of ryanodine and 8.0 mg per g in its presence. The thapsigargin titration gave similar equivalent with or without ryanodine, indicating that the homogenate contained about 8.0 mg of SR per g tissue. Using 3H-ranodine binding as a marker, the cardiac content of SR was calculated to be 16.7 mg per g. These differences are attributed to the non-ideal behavior of these markers. Some of the Ca2+ uptake activity is not thapsigargin sensitive, and some of the 3H-ryanodine binding does not fractionate with the SR Ca2+ uptake activity.  相似文献   

8.
Sarcoplasmic reticulum (SR) responses to repeated sprints and to physical conditioning were studied in 10 Quarter Horses. Exercise tests (four repeated sprints on a treadmill) were conducted before and after 12 wk of sprint conditioning. Muscle samples from the middle gluteal muscle were taken before and after each exercise test, and SR vesicles were isolated. Calcium uptake was determined spectrophotometrically using antipyrylazo III, and Ca2+-ATPase activity was determined using an enzyme-linked optical assay. Conditioning increased calcium uptake rate and Ca2+-ATPase activity by 14 and 38%, respectively, before exercise and by 25 and 26% after exercise. Exercise decreased calcium uptake rate and Ca2+-ATPase activity by 37 and 27%, respectively, before conditioning and by 28 and 21% after conditioning. Decreases in calcium uptake and Ca2+-ATPase activity of SR have been associated with fatigue during exercise, and this association is strengthened by the moderating effect of conditioning.  相似文献   

9.
Cardiac hypertrophy and heart failure are known to be associated with a reduction in Ca2+-ATPase pump levels of the sarcoplasmic reticulum (SR). To determine whether, and to what extent, alterations in Ca2+ pump numbers can affect contraction and relaxation parameters of the heart, we have overexpressed the cardiac SR Ca2+-ATPase specifically in the mouse heart using the alpha-myosin heavy chain promoter. Analysis of 2 independent transgenic lines demonstrated that sarco(endo)plasmic reticulum Ca2+-ATPase isoform (SERCA2a) mRNA levels were increased 3.88+/-0. 4-fold and 7.90+/-0.2-fold over those of the control mice. SERCA2a protein levels were increased by 1.31+/-0.05-fold and 1.54+/-0. 05-fold in these lines despite high levels of mRNA, suggesting that complex regulatory mechanisms may determine the SERCA2a pump levels. The maximum velocity of Ca2+ uptake (Vmax) was increased by 37%, demonstrating that increased pump levels result in increased SR Ca2+ uptake function. However, the apparent affinity of the SR Ca2+-ATPase for Ca2+ remains unchanged in transgenic hearts. To evaluate the effects of overexpression of the SR Ca2+ pump on cardiac contractility, we used the isolated perfused work-performing heart model. The transgenic hearts showed significantly higher myocardial contractile function, as indicated by increased maximal rates of pressure development for contraction (+dP/dt) and relaxation (-dP/dt), together with shortening of the normalized time to peak pressure and time to half relaxation. Measurements of intracellular free calcium concentration and contractile force in trabeculae revealed a doubling of Ca2+ transient amplitude, with a concomitant boost in contractility. The present study demonstrates that increases in SERCA2a pump levels can directly enhance contractile function of the heart by increasing SR Ca2+ transport.  相似文献   

10.
Systolic [Ca2+]i-transients have been shown to be depressed in isolated ventricular myocytes from patients with terminal heart failure compared to controls. Experiments were performed in human ventricular cells to investigate whether this reduced systolic [Ca2+]i-transient may be due to a decreased Ca(2+)-content of the sarcoplasmic reticulum (SR). Single myocytes were isolated from left ventricular myocardium of patients with terminal heart failure undergoing cardiac transplantation. These results were compared to those obtained from cells of healthy donor hearts that were not suitable for transplantation for technical reasons. [Ca2+]i-transients were recorded from isolated cells under voltage clamp perfused internally with the Ca(2+)-indicator fura-2. The Ca(2+)-content of the SR was estimated by rapid extracellular application of caffeine (10 mM) to open the Ca(2+)-release channel of the SR and comparison of the caffeine-induced [Ca2+]i-transients in cells from patients with heart failure and from controls without heart failure. Upon steady-state depolarizations to +10 mV (maximum of the Ca(2+)-current), [Ca2+]i-transients in cells from patients with heart failure were significantly smaller than in myocytes from undiseased hearts (333 +/- 26 v 596 +/- 80 nM, P < 0.05). Application of caffeine caused a [Ca2+]i-transient that was always larger than during depolarization. Caffeine-induced [Ca2+]i-transients were significantly smaller in cells from diseased hearts compared with controls (970 +/- 129 v 2586 +/- 288 nM, P < 0.01). A positive correlation was found between left ventricular ejection fraction and caffeine-induced [Ca2+]i-transients in these cells. It is concluded, that depressed [Ca2+]i-transients in myocytes from patients with heart failure may be caused by a decreased Ca(2+)-content of the SR possibly due to an altered Ca(2+)-ATPase activity in these hearts. It is not necessary to postulate an additional defect of the Ca(2+)-release function of the SR to account for the alterations of intracellular (Ca2+]i-handling.  相似文献   

11.
1. The Ca2+ buffering function of sarcoplasmic reticulum (SR) in the resting state of arteries from spontaneously hypertensive rats (SHR) was examined. Differences in the effects of ryanodine that removes the function of SR, on tension and cellular Ca2+ level were assessed in endothelium-denuded strips of femoral arteries from 13-week-old SHR and normotensive Wistar-Kyoto rats (WKY). 2. The addition of ryanodine to the resting strips caused a concentration-dependent contraction in SHR. This contraction was extremely small in WKY. In the presence of 10(-5) M ryanodine, caffeine (20 mM) failed to cause a further contraction in SHR, but it caused a small contraction in WKY. After washout of the strips with a Krebs solution, the resting tone was greatly elevated in SHR when compared with WKY. 3. The elevated resting tone in SHR strips was abolished by 10(-7) M nifedipine. The ryanodine-induced contraction was also abolished by 10(-7) M nifedipine. Nifedipine itself caused a relaxation from the resting tone of SHR strips, suggesting the maintenance of myogenic tone. 4. In strips preloaded with fura-PE3, the addition of 10(-5) M ryanodine caused a large and moderate elevation of cytosolic Ca2+ level ([Ca2+]i) in SHR and WKY, respectively. After washout, the resting [Ca2+]i was greatly elevated in SHR. The ryanodine-induced elevation of [Ca2+]i was decreased by 5 x 10(-6) M verapamil in SHR. Verapamil itself caused a decrease in resting [Ca2+]i which was significantly greater in SHR than in WKY, and caused a relaxation only in SHR. 5. The resting Ca2+ influx in arteries measured by a 5 min incubation with 45Ca was significantly increased in SHR when compared with WKY. The resting Ca2+ influx was not increased by 10(-5) M ryanodine in both SHR and WKY. The net cellular Ca2+ uptake in arteries measured by a 30 min incubation with 45Ca was decreased by 10(-5) M ryanodine in both strains. 6. The resting Ca2+ influx was decreased by 10(-7) M nifedipine in the SHR artery, but it was unchanged in the WKY artery. 7. These results suggest that (1) the Ca2+ influx via L-type voltage-dependent Ca2+ channels was increased in the resting state of the SHR femoral artery, (2) the greater part of the increased Ca2+ influx was buffered by Ca2+ uptake into the SR and some Ca2+ reached the myofilaments resulting in the maintenance of the myogenic tone, and (3) therefore the functional removal of SR by ryanodine caused a potent contraction in this artery.  相似文献   

12.
BACKGROUND: The direct effect of halothane on vascular smooth muscle is mediated in part via its effects on the sarcoplasmic reticulum (SR). Little information is available concerning the effects of other volatile anesthetics including isoflurane and sevoflurane, whose vascular effects differ from those of halothane. The aim of the present study was to compare the effects of halothane, isoflurane and sevoflurane on the SR by testing the contraction induced by caffeine in vascular smooth muscle. METHODS: Rings without endothelium from isolated canine mesenteric artery were mounted in physiological saline solution (PSS) for isometric tension recording. After complete depletion of Ca2+ from the SR by adding 35 mM caffeine, the rings were exposed to normal Ca2+ containing PSS (Ca2+ loading), to Ca(2+)-free PSS for 10 min, and then to 15 mM caffeine to induce contraction. Anesthetics were administered during Ca2+ loading, the Ca(2+)-free phase and simultaneously with caffeine administration. RESULTS: Halothane (0.5-2%) attenuated the caffeine-induced contraction of canine mesenteric artery when administered during Ca2+ loading in the SR (P < 0.001), whereas isoflurane and sevoflurane (1-4%) failed to affect the contraction. When given simultaneously with caffeine, halothane (1-2%) potentiated the caffeine-induced contraction (P < 0.05), but isoflurane and sevoflurane had no effect. When given before caffeine administration, halothane (0.5-2%), isoflurane (2-4%) and sevoflurane (4%) all potentiated the caffeine-induced contraction (P < 0.05). CONCLUSION: It has been shown that halothane not only potentiates caffeine-induced Ca2+ release from the SR, but also induces contraction by releasing Ca2+ from the SR. We conclude that halothane decreases Ca2+ accumulation in the SR while exerting facilitative and additive effects on caffeine-induced Ca2+ release from the SR when applied before caffeine administration and simultaneously with caffeine, respectively, whereas isoflurane and sevoflurane lack both the ability to decrease Ca2+ accumulation and an additive effect on caffeine-induced Ca2+ release from the SR, but are able to facilitate Ca2+ release by caffeine.  相似文献   

13.
The relationship between changing driving force of the Na+/Ca2+-exchanger (deltaG(exch)) and associated cytosolic calcium fluxes was studied in rat ventricular myocytes. DeltaG(exch) was abruptly reversed by the reduction of extracellular sodium ([Na+]o) with or without sustained depolarization by the elevation of potassium ([K+]o). Cytosolic sodium ([Na+]i) and calcium ([Ca2+]i) were measured with SBFI and indo-1 respectively and the time course of recovery of deltaG(exch) was calculated. Following abrupt reversal of deltaG(exch) from +4.1 to -9.2 kJ/mol [Na+]i exponentially decreased from 9.6-2.5 mmol/l (t(1/2) about 30 s) and [Ca2+]i transiently increased to a peak value after about 30 s. Negative values of deltaG(exch) were associated with an increase and positive values with a decrease of [Ca2+]i. Equilibrium (deltaG(exch) = 0) was reached after about 30 s coinciding with the time to peak [Ca2+]i. After 180 s deltaG(exch) reached a new steady state at +3.5 kJ/mol. Inhibition of SR with ryanodine or thapsigargin reduced the amplitude of the [Ca2+]i transient and shifted its peak to 80 s, but did not affect the time course of [Na+]i changes. In the presence of ryanodine or thapsigargin the time required for deltaG(exch) to recover to equilibrium was also shifted to 80 s. When we changed the deltaG(exch) to the same extent by the reduction of [Na+]o in combination with a sustained depolarization, [Na+]i decreased less and the amplitude of [Ca2+]i transient was much enhanced. This increase of [Ca2+]i was completely abolished by verapamil. DeltaG(exch) only recovered to a little above equilibrium (+1 kJ/mol). Inhibition of the Na+/K+-ATPase with ouabain entirely prevented the decrease of [Na+]i and caused a much larger increase of [Ca2+]i, which remained elevated; deltaG(exch) recovered to equilibrium and never returned to positive values. The rate of change of total cytosolic calcium was related to deltaG(exch), despite the fact that the calcium flux associated with the exchanger itself contributed only about 10%; SR related flux contributed by about 90% to the rate of change of total cytosolic calcium. In summary, reduction of [Na+]o causes reversal of the Na+/Ca2+-exchanger and its driving force deltaG(exch), a transient increase of [Ca2+]i and a decrease of [Na+]i. The influx of calcium associated with reversed deltaG(exch) triggers the release of calcium from SR. Both the decrease of [Na+]i and the increase of [Ca2+]i contribute to the recovery of deltaG(exch) to equilibrium. The time at which deltaG(exch) reaches equilibrium always coincides with the time to peak of [Ca2+]i transient. Activation of the Na+/K+-ATPase is required to reduce [Na+]i and recover deltaG(exch) to positive values in order to reduce [Ca2+]i. We conclude that deltaG(exch) is a major regulator of cytosolic calcium by interaction with SR.  相似文献   

14.
The effects of niflumic acid on whole-cell membrane currents and mechanical activity were examined in the rat portal vein. In freshly dispersed portal vein cells clamped at -60 mV in caesium (Cs+)-containing solutions, niflumic acid (1-100 microM) inhibited calcium (Ca2+)-activated chloride currents (IC1(Ca)) induced by caffeine (10 mM) and by noradrenaline (10 microM). In a potassium (K+)-containing solution and at a holding potential of - 10 mV, niflumic acid (10-100 microM) induced an outward K+ current (IK(ATP)) which was sensitive to glibenclamide (10-30 microM). At concentrations < 30 microM and at a holding potential of -2 mV, niflumic acid had no effect on the magnitude of the caffeine- or noradrenaline-stimulated current (IBK(Ca)) carried by the large conductance, Ca(2+)-sensitive K+ channel (BKCa). However, at a concentration of 100 microM, niflumic acid significantly inhibited IBK(Ca)) evoked by caffeine (10 mM) but not by NS1619 (1-(2'-hydroxy-5'-trifluoromethylphenyl)-5-trifluoromethyl-2(3 H) benzimidazolone; 20 microM). In Cs(+)-containing solutions, niflumic acid (10-100 microM) did not inhibit voltage-sensitive Ca2+ currents. In intact portal veins, niflumic acid (1-300 microM) inhibited spontaneous mechanical activity, an action which was partially antagonised by glibenclamide (1-10 microM), and contractions produced by noradrenaline (10 microM), an effect which was glibenclamide-insensitive. It is concluded that inhibition of ICl(Ca) and stimulation of IK(ATP) both contribute to the mechano-inhibitory actions of niflumic acid in the rat portal vein.  相似文献   

15.
The Ca2+ uptake by the sarcoplasmic reticulum (SR) can be affected by direct modulation of the Ca2+ pump or by removing the inhibitory effect of dephosphorylated phospholamban. The effect of these mechanisms was assessed using ellagic acid and 1-(3,4-dimethoxyphenyl)-3-dodecanone. Both compounds (30 micromol/l) enhanced SR-Ca2+ uptake in rabbit cardiomyocytes by 65.3 +/- 13% and 44.3 +/- 6.7% for 1-(3,4-dimethoxyphenyl)-3-dodecanone and ellagic acid, respectively (at pCa 6.2). A similar effect was observed in cardiac SR microsomes (59.5 +/- 7.4% and 45.1 +/- 6.7) with 30 micromol/l 1-(3,4-dimethodoxyphenyl)-3-dodecanone and ellagic acid, respectively. 1-(3,4-Dimethoxyphenyl)-3-dodecanone increased Ca2+ storage by cardiac SR microsomes mainly at high [Ca2+] with a 57% increase of Vmax, whereas ellagic acid increased Vmax to a smaller extent (22%) and stimulated Ca2+ uptake at lower [Ca2+] with a leftward-shift of the pCa/ATPase relationship by pCa 0.24. Ellagic acid also differed from 1-(3,4-dimethoxylphenyl)-3-dodecanone in that it produced a Ca2+ sensitizing effect only in cardiac SR microsomes (by pCa 0.3) whereas 1-(3,4-dimethoxyphenyl)-3-dodecanone stimulated the ATPase, at saturating Ca2+, in both cardiac and skeletal muscle SR vesicles. It is suggested that 1-(3,4-dimethoxyphenyl)-3-dodecanone stimulates directly the Ca2+-ATPase activity, in contrast to ellagic acid which enhances the cardiac SR-Ca2+ uptake by interacting with phospholamban, as confirmed by the lack of additive effect between ellagic acid and monoclonal antibodies raised against phospholamban. 1-(3,4-dimethoxyphenyl)-3-dodecanone and ellagic acid constitute attractive pharmacological tools to investigate the functional consequences of enhancing SR Ca2+, uptake by affecting different mechanisms.  相似文献   

16.
The influence of myoplasmic Mg2+ (0.05-10 mM) on Ca2+ accumulation (net Ca2+ flux) and Ca2+ uptake (pump-driven Ca2+ influx) by the intact sarcoplasmic reticulum (SR) was studied in skinned fibres from the toad iliofibularis muscle (twitch portion), rat extensor digitorum longus (EDL) muscle (fast twitch), rat soleus muscle (slow twitch) and rat cardiac trabeculae. Ca2+ accumulation was optimal between 1 and 3 mM Mg2+ in toad fibres and reached a plateau between 1 and 10 mM Mg2+ in the rat EDL fibres and between 3 and 10 mM Mg2+ in the rat cardiac fibres. In soleus fibres, optimal Ca2+ accumulation occurred at 10 mM Mg2+. The same trend was obtained with all preparations at 0.3 and 1 microM Ca2+. Experiments with 2,5-di-(tert-butyl)-1,4-benzohydroquinone, a specific inhibitor of the Ca2+ pump, revealed a marked Ca2+ efflux from the SR of toad iliofibularis fibres in the presence of 0.2 microM Ca2+ and 1 mM Mg2+. Further experiments indicated that the SR Ca2+ leak could be blocked by 10 microM ruthenium red without affecting the SR Ca2+ pump and this allowed separation between SR Ca2+ uptake and SR Ca2+ accumulation. At 0.3 microM Ca2+, Ca2+ uptake was optimal with 1 mM Mg2+ in the toad iliofibularis and rat EDL fibres and between 1 and 10 mM Mg2+ in the rat soleus and trabeculae preparations. At higher [Ca2+] (1 microM), Ca2+ uptake was optimal with 1 mM Mg2+ in the iliofibularis fibres and between 1 and 3 mM Mg2+ in the EDL fibres.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The activity of Ca(2+)-ATPase and calcium content were measured in sarcoplasmic reticulum (SR) and mitochrondria of myocardium from 40 adult female Wistar rats after exposure to 37 degrees C, 39 degrees C, 41 degrees C and 43 degrees C for 40 min respectively in vitro. The 45Ca uptake, intracellular free Ca2+ concentration ([Ca2+]i) and the relatively active calmodulin content were also observed in cultured cardiomyocytes from 120 neonatal Wistar rats under the same condition of heat exposure. The results showed that (1) the activity of Ca(2+)-ATPase of SR and mitochrondria of myocardium decreased after heat exposure, (2) the calcium content of SR and mitochrondria also showed a tendency of decrease with increase of exposure temperature, (3) the 45Ca uptake and mean [Ca2+]i increased, whereas the calmodulin content decreased. It is suggested that disturbances of intracellular calcium homeostasis may be responsible for cardiac functional disorder after heat exposure.  相似文献   

18.
The synaptosomal plasma membrane Ca2+-ATPase (PMCA) purified from pig brain was reconstituted with liposomes prepared by reverse phase evaporation at a lipid to protein ratio of 150/1 (w/w). ATP-dependent Ca2+ uptake and H+ ejection by the reconstituted proteoliposomes were demonstrated by following light absorption and fluorescence changes undergone by arsenazo III and 8-hydroxy-1,3, 6-pyrene trisulfonate, respectively. Ca2+ uptake was increased up to 2-3-fold by the H+ ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone, consistent with relief of an inhibitory transmembrane pH gradient (i.e. lumenal alkalinization) generated by H+ countertransport. The stoichiometric ratio of Ca2+/H+ countertransport was 1.0/0.6, and the ATP/Ca2+ coupling stoichiometry was 1/1 at 25 degrees C. The electrogenic character of the Ca2+/H+ countertransport was demonstrated by measuring light absorption changes undergone by oxonol VI. It was shown that a 20 mV steady state potential (positive on the lumenal side) was formed as a consequence of net charge transfer associated with the 1/1 Ca2+/H+ countertransport. Calmodulin stimulated ATPase activity, Ca2+ uptake, and H+ ejection, demonstrating that these parameters are linked by the same mechanism of PMCA regulation.  相似文献   

19.
Bay K 8644, an L-type Ca2+ channel agonist, was shown previously to increase resting sarcoplasmic reticulum (SR) Ca2+ loss and convert post-rest potentiation to decay in dog and ferret ventricular muscle. Here, the effects of Bay K 8644 on local SR Ca2+ release events (Ca2+ sparks) were measured in isolated ferret ventricular myocytes, using laser scanning confocal microscopy and the fluorescent Ca2+ indicator fluo-3. The spark frequency under control conditions was fairly constant during 20 s of rest after interruption of electrical stimulation. Bay K 8644 (100 nmol/L) increased the spark frequency by 466+/-90% of control at constant SR Ca2+ load but did not change the spatial and temporal characteristics of individual sparks. The increase in spark frequency was maintained throughout the period of rest. The increase in Ca2+ spark frequency induced by Bay K 8644 was not affected by superfusion with Ca2+-free solution (with 10 mmol/L EGTA) but was suppressed by the addition of 10 micromol/L nifedipine (which by itself did not alter resting Ca2+ spark frequency). This suggests that the effect of Bay K 8644 on Ca2+ sparks is mediated by the sarcolemmal dihydropyridine receptor but is also independent of Ca2+ influx. Low concentrations of caffeine (0.5 mmol/L) increased both the average frequency and duration of sparks. Ryanodine (50 nmol/L) increased the spark frequency and also induced long-lasting Ca2+ signals. This may indicate long-lasting openings of SR Ca2+ release channels and a lack of local SR Ca2+ depletion. In lipid bilayers, Bay K 8644 had no effect on either single-channel current amplitude or open probability of the cardiac ryanodine receptor. It is concluded that Bay K 8644 activates SR Ca2+ release at rest, independent of Ca2+ influx and perhaps through a functional linkage between the sarcolemmal dihydropyridine receptor and the SR ryanodine receptor. In contrast, caffeine and ryanodine modulate Ca2+ sparks by a direct action on the SR Ca2+ release channels.  相似文献   

20.
Confocal laser scanning microscopy was used to analyze alterations in nuclear free calcium (Ca2+n) levels induced by platelet-derived growth factor (PDGF) isoforms in BALB/c3T3 fibroblasts loaded with the calcium-sensitive fluorescent indicator Fluo-3. Both AA-PDGF and BB-PDGF caused a transient increase in Ca2+n. Analysis of PDGF-induced Ca2+n alterations as a function of time revealed that BB-PDGF stimulation resulted in the generation of Ca2+n oscillations that diminished over time. The frequency of BB-PDGF-stimulated oscillations was modulated by extracellular Ca2+ and could not be mimicked by increasing intracellular inositol 1,4,5-trisphosphate levels in the absence of growth factor stimulation. Caffeine alone had no effect on Ca2+n levels, but exposure of cells to caffeine after BB-PDGF stimulation augmented Ca2+n oscillations, either by increasing the frequency or reinitiating preexisting oscillations. The genesis of these oscillations in Ca2+n appears to be in the region just outside of the nucleus, as perinuclear cytoplasmic free calcium (Ca2+i) increased just prior to Ca2+n. In contrast, AA-PDGF stimulation resulted in the generation of one or two irregular, transient Ca2+n spikes. Caffeine pretreatment followed by AA-PDGF stimulation resulted in Ca2+n oscillations very similar to those produced by BB-PDGF alone. Additionally, the AA-PDGF and BB-PDGF isoforms appeared to modulate distinct pools of cellular Ca2+, as BB-PDGF was still capable of inducing Ca2+n oscillations subsequent to prior induction of oscillations by AA-PDGF/caffeine. These PDGF isoform-specific changes in nuclear free Ca2+ could serve as a mechanism by which isoform-specific cellular signaling pathways may be manifested by the growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号