首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
为优化酒钢集团某矿厂铁矿分选工艺流程,提高入磨矿品位,降低选矿成本,开展了高压辊磨超细碎—预先磁选抛尾试验研究。结果表明,一段磁选抛尾精矿铁品位为24.85%,磁性铁回收率为98.91%,尾矿磁性铁品位为1.58%;二段磁选精矿铁品位为26.73%,磁性铁回收率为98.58%,尾矿磁性铁品位为2.38%;在高压辊磨磁选试验中,湿式磁选抛尾效果较好,在3 mm湿式磁选抛尾工艺中,磁选精矿品位为28.62%,回收率为94.83%;在5 mm湿式磁选抛尾工艺中,磁选精矿品位为28.35%,回收率为95.54%。  相似文献   

2.
时小坤  王伟之 《现代矿业》2012,(7):109-110,121
针对研山铁矿浮选尾矿磁性铁含量为1.80%,含量较高且总尾矿量大这一特点,进行了磨矿磁选铁回收试验。试验结果表明:采用浮选尾矿回收抛杂磁选—磨矿—磁选—2段磁选柱磁选后,可选出品位在60%以上的铁精矿。磁选柱选出的尾矿再经过细磨后,经磁选管选别,获得了铁精矿品位达63%的满意指标。  相似文献   

3.
某铁尾矿再回收铁矿物试验研究   总被引:3,自引:4,他引:3  
对某TFe品位为18.57%的铁尾矿进行了再回收试验研究。通过预富集、弱磁选可获得铁品位66.09%、回收率26.08%的弱磁选精矿;对弱磁选尾矿进行强磁选-阴离子反浮选可获得铁品位54.29%、回收率37.29%的反浮选精矿。对反浮选产品进行分析可知, 铁闪石无选择性分配是造成反浮选作业选别效率低的主要原因。  相似文献   

4.
攀枝花某钛铁矿选矿厂尾矿库中尾矿TiO2和TFe品位分别为10.28%和10.38%,采用弱磁选铁-强磁预富集钛-浮选工艺回收其中的铁和钛。弱磁选铁可获得铁品位57.5%、回收率22.19%的铁精矿;弱磁选铁尾矿经强磁预富集得到TiO2品位15.63%、回收率79.69%的强磁钛粗精矿;强磁钛粗精矿经一次粗选一次扫选四次精选浮选闭路试验可获得TiO2品位45.97%、对强磁钛粗精矿回收率76.32%、对尾矿库尾矿回收率60.82%的钛精矿。该工艺实现了钛铁矿尾矿二次资源的综合利用。  相似文献   

5.
摘要:攀钢密地选矿厂阶磨阶选流程改造后,产品的物料特性发生了变化,尾矿品位较改造前有所增加。选铁尾矿中品位TFe16.16%, TiO211.03%,尾矿中铁品位偏高,有必要进行降低尾矿中的铁品位的试验研究。研究结果表明,采用弱磁选可获得产率为5.02%,品位为TFe57.24%,回收率为17.78%的铁精矿;采用弱磁选—强磁选—浮选工艺流程,可获得产率为10.41%,TiO2品位为47.15%,回收率为44.49%的钛精矿。将所有尾矿混合,其混合尾矿降低至TFe11.42%, TiO25.97%,研究结果对密地选矿厂的流程改造有一定的参考作用。  相似文献   

6.
辽宁某钼尾矿粒度较粗,+0.074 mm占75.16%,铁品位为7.26%,铁主要以磁性铁形式存在,在0.074~0.038 mm粒级有一定的富集现象。对该尾矿进行了磁性铁矿物选矿回收试验。结果表明,试样采用一段弱磁选、一段中磁选、中磁选精矿再磨后二段弱磁选、两段弱磁选精矿合并后磁悬浮精选机精选,可获得铁品位59.12%、铁回收率为70.05%的铁精矿。  相似文献   

7.
王蕾  李冬洋 《现代矿业》2012,(8):148-149,151
大红山铁矿400万t/a选矿厂尾矿品位较高,降低尾矿铁品位有利于提高铁回收率。在对一段强磁选尾矿和二段强磁选尾矿性质研究的基础上,分别进行了回收工艺研究。研究表明,一、二段强磁尾矿分别采用1粗1精重选流程和1粗1精强磁选、强磁精选尾矿摇床再选流程处理,均能显著降低尾矿铁品位,从而提高精矿铁回收率。  相似文献   

8.
白云鄂博尾矿铁品位为25.71%,铁主要以磁铁矿、赤铁矿和硅酸盐形式存在。试样粒度较细,-0.023 mm粒级产率为56.03%、铁品位达到34.11%、铁分布率高达70.26%,而+0.025 mm粒级铁品位低于16%、铁分布率不足15%。为给该尾矿中铁的回收提供技术依据,进行了选矿试验。结果表明:试样经1粗1精弱磁选,获得了铁品位为64.10%、回收率为16.48%的弱磁选精矿;弱磁选尾矿经1粗1精高梯度强磁选,获得了铁品位为47.04%的强磁选精矿;强磁选精矿磨细至-0.023 mm占90%,以硫酸为调整剂、乳酸为抑制剂、W201为捕收剂经1粗2精1扫正浮选,正浮选精矿与弱磁精矿合并后为最终精矿,其铁品位为64.45%、回收率为58.47%。试验取得了较好的分选指标,可以为白云鄂博尾矿中铁资源的综合回收提供技术参考。  相似文献   

9.
某赤铁矿浮-磁工艺流程试验研究   总被引:1,自引:1,他引:1  
对某赤铁矿的浮选工艺进行了系统试验研究,得到了浮选最佳药剂条件,浮选铁精矿品位为62.50%,铁的回收率为65.64%,浮选尾矿用弱磁选机磁选还可取得铁品位61.09%、铁回收率6.72%的磁选精矿。最终铁的总回收率为72.36%,铁精矿品位为62.33%。  相似文献   

10.
首先对包钢选矿厂磁选铁精矿反浮选尾矿进行了弱磁选选铁磨矿细度试验和浮稀土粗选药剂用量试验,然后对试样进行了全流程试验。试验结果表明,采用3段阶段磨矿-弱磁选选铁、1粗3精浮选选稀土、第3段精选稀土的尾矿返回精选2流程处理现场反浮选尾矿,最终获得了REO品位为58.12%、REO回收率为64.74%、含铁5.70%的稀土精矿和铁品位为64.47%、铁回收率为56.51%、稀土REO品位为1.65%的铁精矿。  相似文献   

11.
吴红  王小玉  刘军  张永 《金属矿山》2021,50(9):79-84
山西某微细粒铁矿石选矿厂原采用阶段磨矿—弱磁选—强磁选—阴离子反浮选工艺流程,生产中存在强磁选尾矿铁品位偏高、浮选指标不理想等问题.因此,通过一段强磁选磁场强度优化、弱磁选—强磁选替代絮凝脱泥等方法优化工艺流程.结果表明:①针对铁品位30.60%的试样,在磨矿细度为-0.076 mm占85%的条件下,采用一段弱磁选(1...  相似文献   

12.
本文设计了一种新型气幕辅助高梯度磁选模型,其特点是在分选区域引入上升的气泡群以提高精矿品位。利用该设备对含铁尾矿进行选铁试验,结果表明,通过离心选初次抛尾,再经过一粗一精高梯度磁选,可从铁品位为17.80%的原矿中,得到铁品位为45.10%,回收率为48.17%的铁精矿。气幕能提高铁精矿品位归功于气泡的搅拌作用和气泡破碎时形成的负压及强扰动,同时气泡使矿物颗粒在分选区停留时间延长,可降低尾矿品位。  相似文献   

13.
针对某铁矿山尾矿开展了矿石性质研究,并探索采用磁选方法从该尾矿中回收含铁矿物的可行性。物相分析结果表明,该尾矿中磁铁矿含量约为40%,且磁铁矿解离度约97%。在铁尾矿中铁品位为19.87%的情况下,无需磨矿,经过一次粗选即可获得铁品位68.96%、回收率39.40%的选别指标。  相似文献   

14.
周咏  田艳红 《金属矿山》2019,48(5):188-191
研山铁矿综合尾矿铁品位为9.14%,磁性铁分布率为20.13%、赤褐铁分布率为55.91%,铁矿物主要富集在微细粒级,其次是粗粒级。为充分利用选矿厂闲置的原反浮选尾矿选铁系统回收综合尾矿中的铁矿物,进行了选矿试验。结果表明,试样经强磁选预富集-磨矿-弱磁选-1粗1精1扫反浮选流程处理,在高梯度强磁选背景磁感应强度为0.72 T,磨矿细度为-74 μm占90%,弱磁选磁场强度为238 kA/m,反浮选粗选pH调整剂NaOH用量为1 300 g/t(pH=11.5)、抑制剂苛化淀粉用量为840 g/t、活化剂CaO用量为687.5 g/t、捕收剂GK68用量为1 800 g/t,精选GK68用量为900 g/t情况下,可获得铁品位为69.84%、回收率为4.13%的优质铁精矿。改造后的生产实践表明,采用盘式磁选回收机预富集-一段闭路磨矿-浓缩磁选-二段闭路磨矿-弱磁选抛尾-1粗1精3扫闭路反浮选流程处理选矿厂综合尾矿,每年可产出铁品位超过69%的铁精粉约5.5万t,可为企业增加利润1 750万元/a。  相似文献   

15.
随着矿山资源的不断开采与加工利用,某地铁矿尾矿库容量接近饱和,不仅占用土地,还会污染环境。为开发其二次资源,作者在对铁矿尾矿进行多元素分析、粒度分布和铁物相分析的基础上选择试验方案,对矿石中的磁铁矿矿物进行弱磁选机条件试验,考查了适宜的粒度、场强、给矿浓度、给矿时间等因素,再对弱磁选机尾矿进行强磁试验,然后再采用重选的方法进行分选,最后进行综合流程试验。根据不同试验方法、不同流程工艺的试验对比,确定磁选加重选的联合流程工艺为最佳的铁尾矿分选工艺。最终铁混合精矿的产率为9.39%,精矿回收率为27.91%,精矿品位62%,分选效果良好。试验结果不仅可有效回收尾矿中的铁,而且也部分解决了该矿的尾矿堆存问题,为今后矿山的开发利用和实现循环经济的发展奠定了基础,具有很大的潜力以及经济和社会效益。  相似文献   

16.
四川某铁尾矿中铁和硫的综合回收选矿试验   总被引:2,自引:2,他引:0  
四川某铁矿磁选尾矿中含有一定量的铁矿物和硫矿物可以综合回收。根据该尾矿的矿石性质,采用筛分分级--0.5 mm重选预富集-重选粗精矿浮选选硫-浮选尾矿磁选选铁的工艺流程进行选矿试验,获得了硫精矿、强磁性铁精矿和弱磁性铁精矿3种产品。硫精矿硫品位和硫回收率分别为39.66%和82.54%,强磁性铁精矿铁品位和铁回收率分别为62.28%和32.59%%,弱磁性铁精矿分别为51.87%和5.36%。  相似文献   

17.
首钢大石河铁矿尾矿综合利用的研究   总被引:1,自引:0,他引:1  
针对首钢大石河铁矿尾矿中含有少量强磁性铁矿物的实际情况和储量巨大的特点,研究从旧尾矿中回收磁性铁精矿的工艺流程。试验结果表明,在尾矿品位11.50%的情况下,采用预先磁选、两段磨矿、多次磁选以及精矿脱泥精选试验手段,可获得含铁品位67.32%,回收率18.91%的分选指标。在此基础上,进行了建筑砂筛出试验以及剩余尾矿砂填海造地的探讨。  相似文献   

18.
东鞍山烧结厂浮选尾矿TFe品位为22.82%,FeO含量为9.87%,SiO2的含量为51.24%,S和P含量较低,均为0.03%,属于低硫、低磷、高硅型铁尾矿。此外,该尾矿-0.038 mm粒级含量高达56.44%,同时铁矿物主要集中在该粒级中,铁分布率达到67.62%。为了实现该铁尾矿的高效回收利用,本试验采用搅拌磨磨矿—弱磁选—强磁粗选—强磁精选—反浮选流程开展了系统的试验研究。结果表明:在搅拌磨磨矿细度为?0.038 mm占95%、弱磁选磁感应强度95 kA/m、强磁粗选磁场磁感应强度796 kA/m、强磁精选磁场磁感应强度398 kA/m的条件下,可获得TFe品位为38.20%、TFe回收率为63.51%的混合磁选精矿指标;将混合磁选精矿在矿浆温度40 ℃、矿浆pH值为11.5、淀粉用量1000 g/t、CaO用量900 g/t、粗选捕收剂TD-2用量600 g/t、一次精选捕收剂TD-2用量为300 g/t、二次精选捕收剂TD-2用量为300 g/t的条件下进行反浮选,闭路试验可获得TFe品位为62.34%、TFe作业回收率为55.10%的浮选精矿。全流程TFe回收率为35.00%,综合尾矿TFe品位为17.01%。试验结果可为东鞍山浮选尾矿中的铁矿物高效选矿回收提供指导。   相似文献   

19.
采用磁化焙烧-磁选工艺对某选铁尾矿进行了试验研究。通过小型静态焙烧试验确定了焙烧温度、焙烧时间、还原剂用量、磨矿粒度、磁场强度等条件的影响, 并在此基础上进行了回转窑动态焙烧条件试验和连续试验。回转窑动态连续试验结果表明: 在焙烧温度750 ℃、焙烧时间60 min、还原剂用量6%, 磨矿粒度-0.045 mm粒级占88.65%, 弱磁选一粗一精(96 kA/m)的条件下, 获得了产率74.69%、品位59.42%、回收率93.85%的综合铁精矿, 尾矿铁品位下降至10%以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号