首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
采用固相反应法制备了Zn0.23Mn0.70Fe2.07O4功率铁氧体材料.研究了材料的静态磁参数和功率损耗;并在100kHz、200mT下对MnZn铁氧体材料的损耗进行了分离.结果表明,试样的Ⅱ峰在80℃左右,与磁滞损耗Ph极小值对应温度一致.材料的损耗特性随温度变化很大,在常温下,磁滞损耗Ph占了材料总损耗的大部分...  相似文献   

2.
高磁导率MnZn铁氧体的ZnO过量研究   总被引:4,自引:0,他引:4  
用化学共沉法和普通空气中烧结,真空冷却工艺,制备了μi为10000的MnZn铁氧体材料。配方中ZnO过量2mol%,能提高μi达30%以上。文中对高磁导率MnZn铁氧体的结构和性能进行了研究.  相似文献   

3.
高磁导率、高直流叠加MnZn软磁铁氧体材料研究   总被引:2,自引:0,他引:2  
用普通陶瓷工艺制备MnZn铁氧体材料,研究了主配方及掺杂对材料直流叠加特性的影响.结果表明,主配方中适当过量的Fe2O3可以增大材料的饱和磁通密度,推迟磁芯的饱和磁化,从而改善材料的直流叠加特性;添加适量的Co2O3等杂质可与铁氧体负的磁晶各向异性常数K1进行补偿,从而改善材料磁导率的温度特性.  相似文献   

4.
研究了预烧工艺对高磁导率MnZn铁氧体材料主要电磁性能的影响。结果表明,适宜的预烧温度可明显缓和该材料的磁导率与品质因数之间的矛盾,同时获得较高磁导率和较高的品质因数,即具有较低的比损耗因子和磁滞常数,同时其它参数也得到一定的改善。  相似文献   

5.
采用传统的氧化物湿法工艺制备CuO掺杂的高磁导率MnZn软磁铁氧体。研究了CuO掺杂对材料烧结特性、微观结构及电磁性能的影响。结果表明,适量的CuO掺杂在确保材料起始磁导率的条件下,有效降低烧结温度,改善温升曲线,提高截止频率,提高阻抗特性。1325℃烧结、掺杂0.1wt%CuO的Mn0.48Zn0.47Fe2.05O4材料具有较好的综合性能:μi=10860,TC=125℃,fr=250kHz,样环T25×15×10磁芯线圈的阻抗Z=1420?。  相似文献   

6.
介绍了一种=10000的高磁导率低损耗MnZn铁氧体TH10材料的性能特点及其烧结、掺杂技术.这种材料适用于低功率信号传输变压器(如ADSL 变压器),可以降低变压器谐波失真,提高传输速率.  相似文献   

7.
采用传统的氧化陶瓷法,以Fe_2O_3、ZnO、MnO_2为原料按照摩尔分数比52.5︰12︰35.5进行配料,在纯N2或4%氧分压烧结气氛中制备了分别掺杂Y~(3+)、La~(3+)、Ce~(3+)、Sm~(3+)、Gd~(3+)、Yb~(3+)的MnZn铁氧体。通过XRD、SEM、软磁交流测量装置等测试研究了样品的组织结构与磁性能。结果表明,在4%氧分压烧结气氛中制备的材料磁性能更好;掺入适量稀土能细化晶粒、优化显微结构,从而提高材料的磁性能。用于掺杂的几种稀土氧化物中,Ce_2O_3掺杂效果最好。掺杂0.03 wt%Ce_2O_3的烧结样品振幅磁导率由未掺杂时的2014提升至2756,增幅约为37%,矫顽力及功耗(测试条件:100 mT,100 kHz)分别由未掺杂时的21.03 A/m、597.5 kW/m~3降低至12.13 A/m、342.9kW/m~3,下降约43%。  相似文献   

8.
采用传统氧化物陶瓷工艺制备Mn_(0.777)Zn_(0.133)Fe_(2.09)O_4铁氧体材料,研究了预烧温度对材料微结构和磁性能的影响。结果表明,随着预烧温度的升高,材料的密度(d)、起始磁导率(μi)和饱和磁感应强度(Bs)均先升高后降低,材料的损耗(Pcv)先降低后升高。当预烧温度为910℃时,材料具有最大的烧结密度、饱和磁感应强度、起始磁导率以及最小的磁芯损耗。  相似文献   

9.
采用当前电子材料领域先进的分析仪器和分析方法,对应用于MnZn高磁导率软磁铁氧体的几种高纯氧化铁的纯度、杂质、比表面积、粒度大小及分布、微观形貌等进行了详尽的分析和比较.并用这几种高纯氧化铁分别制备预烧料和高磁导率软磁铁氧体,对预烧料的物相组成和铁氧体的电磁性能进行了对比分析.  相似文献   

10.
用氧化物陶瓷工艺制备了添加MoO_3的MnZn铁氧体.用扫描电子显微镜观察样品的微观形貌,用X射线衍射仪测量晶格常数,计算了平均晶粒尺寸和气孔率.测试了样品的密度、抗弯强度、维氏硬度以及磁性能.结果表明,MnZn铁氧体的抗弯强度和维氏硬度主要受气孔率的影响,添加适量的MoO_3可促进晶粒生长,同时降低气孔率,进而改善材料的微观形貌,提高其机械性能和磁性能.  相似文献   

11.
用化学共沉淀法在扁平化的FeSiAl粉末表面包覆不同含量的Mn-Zn铁氧体,经冷压成型制备磁粉芯,在660℃氮气保护下退火1h。用XRD分析粉末的相结构,用振动样品磁强计测试粉末的磁性能,用动态磁滞回线测试装置测试磁粉芯的功率损耗。研究结果表明,随着铁氧体包覆量的增加,铁硅铝磁粉饱和磁化强度下降,磁粉芯损耗降低。在100k Hz/300m T测试条件下,包覆量为6%时制备的FeSiAl磁粉芯的损耗降为46.5W/kg。继续提高铁氧体的包覆量,损耗变化不明显。  相似文献   

12.
通过在锰锌铁氧体原料粉末中添加适量的亲水碳纤维,在900℃反应合成了不经粉碎即可使用的锰锌铁氧体微粉。利用SEM、XRD、VSM等手段观测粉体的形貌、结构、性能,确定了热处理的工艺条件,并分析了碳纤维添加量对样品磁性能的影响。结果表明,粉体粒径随碳纤维添加量的增加而增大,当碳纤维添加过量时则会损害样品的磁性能。对于本实验的铁氧体组成,碳纤维的添加为0.5wt%时所得锰锌铁氧体微粉的尖晶石相含量最高,添加量为0.64wt%时饱和磁化率Ms最高。  相似文献   

13.
采用传统的氧化物陶瓷工艺制备高饱和磁通密度、低损耗锰锌软磁铁氧体材料ZY90,研究了主配方和CaCO3、Co2O3等掺杂对材料饱和磁通密度和功率损耗的影响。结果表明,主配方氧化铁含量在55.2mol%时,可以获得较高饱和磁通密度;适量的CaCO3掺入可使铁氧体晶粒均匀,晶粒边界变厚,形成一定厚度的高阻层,降低比损耗因子;添加适量的Co2O3可以使K1值有多个补偿点,提高电阻率,降低损耗;当CaCO3掺杂量为1000×10-6,Co2O3掺杂量为1500×10-6,饱和磁通密度与功率损耗表现最好。  相似文献   

14.
采用传统氧化物陶瓷工艺制备MnZn铁氧体材料。为获得高性能的MnZn软磁铁氧体材料,研究工艺条件及CaO、Nb2O5、Co2O3、TiO2等掺杂对MnZn软磁铁氧体材料增量磁导率的影响。结果表明,适量的CaO掺杂可使铁氧体晶粒尺寸细化,改善铁氧体晶粒的均匀性;适量的Co2O3添加可以改善材料增量磁导率的温度特性;添加适量Nb2O5与TiO2有利于提高起始磁导率、电阻率,降低磁损耗,从而改善材料的直流叠加特性。通过优化掺杂工艺,制备出了高磁导率、宽温、高直流叠加MnZn软磁铁氧体材料。  相似文献   

15.
Lorentz TEM observations of magnetic domain wall motion, as well as TEM observations of grain boundaries, were performed on spin‐sprayed ferrite films #1 (Ni0.17Zn0.22Fe2.61O4) and #2 (Ni0.19Zn0.20Co0.03Fe2.58O4), both 0.5 µm in thickness. They exhibit much higher natural resonance frequencies than the bulk ferrite and thus have been applied to gigahertz noise suppressors. Films #1 and #2 exhibit prominent and weak in‐plane uniaxial magnetic anisotropy, respectively, which is induced along the liquid flow direction during spin‐spraying. Both films have columnar crystallites with 100‐200 nm widths aligned perpendicular to the film plane, and the boundaries of the crystallites have no pores or impurity phases. Therefore, the crystallites are magnetically exchange‐coupled, which is responsible for the unusually high permeability and high natural resonance frequencies of the films. Under zero bias magnetic field, film #1 exhibits mosaic‐shaped magnetic domains, whereas film #2 exhibits magnetic domains elongated along the easy magnetization axis, both several hundred nanometers in width. For both films the domain structure remains unchanged when an in‐plane bias DC magnetic field,Hdc, of up to 10 Oe is applied along the hard axis. Under a stronger Hdc, the domain structure prominently changes, and the domain walls disappear when Hdc exceeds ∼100 Oe. This confirms our previous finding that the initial permeability is ascribed only to magnetization rotation, with no contribution from domain wall motion [J. Magn. Magn. Mater., 278 , 256 (2004)]. © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号