首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
超级电容器用复合炭极板电极的电化学性能   总被引:9,自引:0,他引:9  
用高比表面积活性炭作为原料,酚醛树脂为粘结剂,在高温下粘结成型制备系列超级电容器用固体活性炭极板。采用直流恒流循环法和低温N2吸附对超级电容器电极进行充放电和孔结构分布测试,考察其电化学性能和结构的关系。实验发现,在不同组成的成型活性炭电极中,微孔活性炭含量大,则比电容高,炭化时温度高于800 ℃复合活性炭电极比电容下降。成型活性炭炭化后比表面积降低,微孔孔结构分布变宽,孔容在2~3 nm左右的分布明显加宽。  相似文献   

2.
以具有天然球形颗粒结构的生物质原料马铃薯淀粉为前驱体,通过(NH4)2HPO4活化和KOH二次活化制备微孔炭微球。采用扫描电镜(SEM)、透射电镜(TEM)和N2吸附-脱附分别对样品的形貌特征和孔隙结构进行表征,并在6mol/L KOH电解质溶液中对样品进行电化学测试。结果表明:经二次活化后可制得比表面积2 325 m2/g,总孔容1.11cm3/g,微孔孔容0.82 cm3/g的高微孔率活性炭微球。所制炭微球具有优异的电化学电容特性:在50 mA/g电流密度下,质量比电容为304 F/g;在1 000 mA/g较大的电流密度下,质量比电容为277.4 F/g;在200 mV/s快速电压扫描速率下,循环伏安(CV)曲线仍能保持良好的矩形形状。  相似文献   

3.
在惰性气体N2氛围下,对活性炭进行不同功率的微波加热改性。通过N2吸附等温线、元素分析、Boehm滴定表征微波加热对活性炭孔隙结构和表面化学性质的影响,分析微波加热改性对活性炭吸附烟气中SO2的影响机制。结果表明,微波加热改性降低了活性炭的比表面积和孔隙容积;降低了活性炭表面酸性官能团的数量,增加了活性炭表面碱性官能团的数量。微波加热改性提高活性炭对SO2的吸附量,归结于其对活性炭表面化学性质的影响。微波加热改性活性炭,以CO形式释放的含氧官能团分解,在活性炭表面形成活性中心,促进活性炭对SO2的吸附和催化氧化。  相似文献   

4.
采用光敏电阻将微波诱导活性炭放电产生的光强转化为电压,实时监测试验过程中放电强弱的变化,进而研究微波放电强度对活性炭脱硝的影响。试验结果表明随着活性炭粒径的增大,加热终温的升高,微波诱导放电强度增大;放电强度增大,脱硝效率回升,CO生成量随之增大,说明放电产生的等离子体与NO分子碰撞获得能量,NO分子由基态变成激发态,催化了C—NO的还原反应;强放电后活性炭的蜂窝状孔隙结构被破坏,比表面积由原样的649.614m~2/g减小至466.916m~2/g,微孔体积由273mm~3/g降低至207mm~3/g,弱放电后,微孔结构得到优化,小于2nm的微孔累积量增加,比表面积增加43.3%,微孔体积增加35.5%;经微波诱导放电脱除NO后的活性炭表面化学含氧官能团增加。  相似文献   

5.
煤气化过程中焦炭的表面孔隙结构及其分形特征   总被引:1,自引:4,他引:1  
对气化过程中3种不同变质程度煤的焦炭表面孔隙结构的发展变化规律及其表面分形特征进行研究,发现气化过程不同变质程度煤的焦炭的吸附特性曲线一般均属于典型的I类吸附等温线,表征了煤焦表面主要为微孔的吸附特征;随着气化反应的深入,微孔逐渐生长扩大,焦炭的吸附等温线出现了由I类向II类吸附等温线变化的趋势;同时,煤焦表面的孔径为2~10nm内的中孔随着气化反应的进行变化比较明显,且此范围内的变化与煤的变质程度密切相关,而孔径为10~200nm的中孔和部分大孔则基本保持不变。利用吸附法计算煤焦表面的分形维数,发现煤焦表面存在2个不同的分形维数D1和D2,分别表征了不同的孔径范围的表面分形特征,且D1和D2与煤焦比表面积和微孔比表面积有一定的关联性,但是其变化一般超前于比表面积和微孔比表面积的变化。  相似文献   

6.
以椰壳纤维为生物模板,用溶胶-凝胶法经有氧煅烧过程制得具有椰壳纤维管状形态的SnO_2遗态陶瓷,并采用热失重分析、X射线衍射、比表面积及孔径测试、扫描电镜等技术分别对其热解行为、物相组成、孔特征和显微结构进行分析与表征。结果表明:以椰壳为模板材料,分别在750℃、850℃、950℃有氧煅烧,制备的SnO_2遗态陶瓷样品很好地保留了椰壳纤维管状形貌,样品微观呈现出分级多孔结构,模板的微观结构对晶粒生成和长大有调节作用。通过对模板材料的整理改性,可以有效调控SnO_2遗态陶瓷材料微观结构和性能。  相似文献   

7.
由MOF-5制备的活性多孔碳及其超级电容特性   总被引:1,自引:0,他引:1  
以金属-有机骨架化合物MOF-5为原料,900℃直接炭化制备多孔碳电极材料,并进一步在浓HNO3中活化得到活性多孔碳(APC)。用X-射线衍射(XRD)、扫描电镜(SEM)和氮气吸附等温线等对样品的结构与形貌进行表征。并且以APC材料为超级电容器的电极材料组装成扣式电容器进行循环伏安、恒流充放电、漏电流、自放电、循环寿命等电化学测试。结果表明:样品的比表面积为654 m2/g,并且其孔结构是由微孔、介孔和大孔组成,其最可几孔径为1.93 nm;用APC材料作电极材料组装的超级电容器有良好的电化学性能,在1 A/g充放电电流密度下,APC电容器的比电容可达72 F/g,循环5 000次后,比电容几乎没有减少。  相似文献   

8.
活性炭纤维(activated carbon fiber,ACF)具有很高的比表面积和良好的孔结构,孔径分布较窄。为进一步提高活性碳纤维的脱硝性能,并揭示脱硝机制,采用H2O2,KMnO4/NaOH,NaClO/KOH对ACF进行改性处理,用于燃煤污染物NO的脱除。经过改性处理后,ACF的比表面积和孔容都有不同程度的下降,平均孔径有一定的增大。经X射线光电子能谱法分析表面官能团发现,经过改性处理后ACF表面各类含氧官能团有一定的增加。实验分析了改性ACF对NO的脱除机制,认为脱除机制是由以物理吸附为主的初期阶段和以化学吸附氧化为主的后期阶段构成,且化学吸附阶段,ACF表面化学官能团的催化氧化作用使NO氧化为中间产物NO2,提高了NO脱除效果。结果表明,用摩尔浓度比为0.03 0.1的KMnO4/NaOH对活性炭进行氧化改性可以获得最佳的NO脱除效果。  相似文献   

9.
中孔脲醛树脂炭用作超级电容器电极材料   总被引:1,自引:0,他引:1  
采用甲酸作为催化剂,以尿素和甲醛为原料,通过控制脲醛摩尔比例制备具有不同孔结构的脲醛树脂微球,并进一步碳化处理得到具有发达中孔的脲醛树脂基炭微球。采用扫描电镜、透射电镜、N2吸附手段对所得两种前驱体及碳化产品的形貌与孔结构进行了表征;采用循环伏安法和恒流充放电法,在质量分数30%KOH电解液中对其充放电性能进行了研究。结果表明,所制备的中孔炭BET比表面积达到609 m2/g,总孔容达到1.15 cm3/g。在50 mA/g的充放电电流密度下中孔炭样品UF0.4-800的比电容达到了205 F/g,电流密度10 A/g时与50 mA/g时比电容的比值C10 000/50为67%。说明具有丰富孔结构的脲醛树脂基炭微球是一种具备大电流充放电潜力的超级电容器电极材料。  相似文献   

10.
低温潮湿环境下,吸收剂表面孔隙结构对其表面气固反应过程有着重要的影响。采用等温氮气吸附法对同时吸收SO2/NO2过程中Ca(OH)2颗粒表面孔隙结构的变化特性进行了测量分析。结合SO2和NO2在Ca(OH)2颗粒表面的吸收机制,该文探讨了吸收剂表面孔隙结构的变化机制。研究结果表明,反应产物的形成改变了吸收剂表面孔隙的孔形特征,但对比表面积和孔容的影响并不明显。在反应过程中,孔径大于30nm和小于7nm的孔逐渐减少,而孔径位于两者之间的孔隙数量逐渐增多。吸收剂颗粒表面新孔的出现一方面弥补了由于反应导致的比表面和孔容的降低,另一方面也改变了吸收剂表面的分形特征。孔隙表面的膨胀和产物的堆积是导致吸收剂表面孔隙收缩,孔形变化的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号