首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
基于EEMD能量熵和支持向量机的轴承故障诊断   总被引:2,自引:0,他引:2  
提出了一种基于总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和支持向量机(Support Vector Machine,SVM)的轴承故障诊断方法。首先通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(Intrinsic Mode Function,IMF);轴承发生不同的故障时,信号在不同频带内的能量值会发生改变,故可通过计算不同振动信号的EEMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机,判断轴承的工作状态和故障类型。实验结果表明,文中提出的方法能有效地应用于轴承的故障诊断。  相似文献   

2.
《轴承》2016,(12)
针对滚动轴承振动信号的非平稳特征,以及现实中难以获得大量典型故障样本的情况,提出了一种基于变分模态分解的近似熵和支持向量机的故障诊断方法。首先,通过VMD将原始振动信号分解为若干个频率尺度的本征模态分量;然后,计算各个IMF分量的近似熵并组成特征向量;最后,将上述特征向量输入支持向量机进行训练,并判断轴承的工作状态和故障类型。分析结果表明:与EMD及LMD相比,VMD近似熵与支持向量机相结合后,诊断精度得到了较大的提高,更适用于轴承故障的自动化诊断。  相似文献   

3.
针对自动机振动信号的瞬态冲击、非线性和非平稳性,提出一种基于集合经验模式分解(EEMD)的信息熵和粒子群优化的支持向量机(PSO-SVM)相结合的故障诊断方法。首先采用小波阈值降噪对振动信号进行预处理;其次运用具有抗混叠效应的EEMD对降噪信号进行分解得到本征模式分量(IMF),从而提取能反映自动机状态的特征参数:能量熵、边际谱熵和奇异谱熵;最后对支持向量机(SVM)的参数利用粒子群优化(PSO)算法进行优化,并将特征向量子集分别作为PSO-SVM和概率神经网络(PNN)的输入参数以识别自动机故障,结果表明:PSO-SVM相对于PNN可以提高故障分类正确率,同时证明基于EEMD信息熵和PSO-SVM方法在自动机故障诊断中的有效性。  相似文献   

4.
提出一种基于自适应白噪声完整经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)奇异值熵和支持向量机(support vector machine,SVM)的转子故障诊断方法。利用CEEMDAN方法首先对非平稳的转子振动信号分解得到若干个表征信号自身特性的固有模态函数(intrinsic mode function,IMF),并通过虚假IMF分量判别法,剔除对于故障特征不敏感的IMF,以保证故障信息提取的准确性和有效性,在此基础上产生初始特征向量矩阵。并对此矩阵进行奇异值分解得到矩阵奇异值,使其作为故障特征向量,通过归一化处理得到奇异值熵,并以此作为SVM的输入,对转子的工作状态进行识别。研究结果表明:该方法可有效应用于转子故障诊断,实现对转子工作状态和故障类型的有效诊断。  相似文献   

5.
针对齿轮早期故障特征不明显,提出了一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和进化支持向量机相结合的齿轮故障智能诊断方法。利用EEMD能对齿轮振动信号进行自适应的分解成若干本征模式分量(intrinsic mode function,IMFs),并能有效抑制经典经验模式分解可能出现的模式混叠现象。以所得的IMF分量中提取出来的能量特征为输入建立进化支持向量机,判断齿轮的故障状态。结果表明:建立的混合智能诊断方法的分类正确率最高,能有效诊断齿轮早期故障。  相似文献   

6.
针对齿轮振动信号非线性、非平稳的特点,提出一种基于集合经验模态分解(EEMD)与奇异熵增量谱的齿轮故障特征提取方法。首先,利用EEMD方法将齿轮振动信号分解为若干个平稳的本征模态函数(IMF)分量。EEMD方法利用正态分布白噪声的二进尺度分解特性,能够有效抑制经验模态分解(EMD)中的模态混叠现象。但由于背景噪声和残余辅助白噪声的影响,EEMD分解得到的IMF分量难以准确提取齿轮故障特征。利用奇异值分解(SVD)对IMF分量进行消噪和重构,根据奇异熵增量谱确定重构阶次,准确地提取齿轮的故障特征频率。仿真信号分析和齿轮箱齿轮故障实验验证了该方法的准确性和有效性。  相似文献   

7.
为充分利用振动信号进行故障辨识,提出一种基于集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵判据的滚动轴承故障诊断方法。首先,对滚动轴承的振动信号进行EEMD分解获得若干个本征模态函数(intrinsic mode function,简称IMF),并根据一种IMF分量故障信息含量的评价指标(即峭度、均方差和欧氏距离)选出能够表征原始信号状态的分量进行信号重构;其次,利用奇异值分解技术对重构信号进行处理,结合信息熵算法求取其奇异值熵;最后,利用奇异值熵的大小判断滚动轴承的故障类别。用美国西储大学滚动轴承振动信号对所述方法进行验证的结果表明,相比传统的EMD奇异值熵故障诊断方法,本方法能够清晰的划分出滚动轴承不同工作状态的类别特征区间,而且具有更高的故障诊断精度。  相似文献   

8.
基于ITD方法的线性变换和Akima插值,提出了一种改进的固有时间尺度分解方法(Improve Intrinsic Timescale Decomposition,简称IITD)方法。齿轮振动信号具有非平稳特征,其典型的故障样本难以获取,为此进一步提出了一种基于IITD样本熵和支持向量机的齿轮故障诊断方法。采用IITD法对非平稳的原始加速度振动信号进行分解,并提取包含主要故障特征信息的PR分量,将其样本熵值作为特征向量;然后将特征向量输入到支持向量机中识别齿轮的故障特征。实验分析结果表明:相比BP神经网络,能更有效地应用于齿轮的故障诊断。  相似文献   

9.
针对轴承振动信号具有非线性、非平稳性以及故障特征提取困难的问题,提出了一种基于EEMD-SVD与支持向量机的轴承故障诊断方法。首先,利用集成经验模态分解方法将轴承振动信号自适应地分解为多个本征模态函数分量。然后,根据峭度准则选取6个本征模态函数分量,并将其构成的矩阵进行奇异值分解得到特征向量。最后,将特征向量输入支持向量机进行故障诊断。利用凯斯西储大学的轴承数据进行了试验,并与BP神经网络进行了对比,结果验证了本文方法的有效性。  相似文献   

10.
针对滚动轴承振动信号的低信噪比、高复杂性及非平稳特性,提出基于经验模态分解、多尺度熵算法与支持向量机的故障诊断方法。对振动信号通过小波包降噪提高信噪比,然后利用经验模态分解得到多个本征模态函数分量,选择与降噪信号强相关的本征模态函数分量计算其多尺度样本熵,确认能区分故障类型的最佳尺度。将这一尺度下相应分量的样本熵作为特征向量,经过归一化处理后输入支持向量机进行故障分类。试验结果表明在小样本条件下可以准确识别滚动轴承故障类型,为滚动轴承的故障识别提供了一种高效诊断方法。  相似文献   

11.
董文智  张超 《机械强度》2012,34(2):183-189
提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和奇异值差分谱的轴承故障诊断方法。首先将非平稳的原始轴承振动信号通过EEMD方法分解成若干个平稳的本征模函数(intrinsic modefunction,IMF);由于背景噪声的影响,从各个IMF的频谱中难以准确地得到故障频率。对IMF分量构建Hankel矩阵,并进行奇异值分解,进一步找到奇异值差分谱,根据奇异值差分谱理论对某IMF分量进行消噪和重构,然后再求其频谱,便能准确地得到故障频率。实验结果表明,所提出的方法能有效地应用于轴承的故障诊断。  相似文献   

12.
针对齿轮故障信号的非线性及常伴有大量噪声干扰的问题,提出一种基于变分模态分解(VMD)的自回归(AR)模型和关联维数相结合的故障特征提取方法。该方法采用VMD将齿轮振动信号分解为一系列固有模态函数(IMF),通过频域互相关系数准则选取对信号特征敏感的IMF分量进行信号重构,对重构信号建立AR模型,并以AR模型自回归参数的关联维数作为特征量对齿轮的工作状态和故障类型进行识别。通过实测齿轮振动信号的分析,证明了所提方法的有效性。  相似文献   

13.
毋文峰  李浩  朱露 《中国机械工程》2015,26(22):3028-3033
针对机械设备的故障特征信息提取问题,提出了基于奇异值融合的机械盲信息提取方法。首先,由机械振动测量信号分离振动源信号,并进行包络解调组成包络信号矩阵,进而进行奇异值分解,提取矩阵的奇异值均值和奇异值熵作为故障特征信息;然后,针对分离矩阵直接进行奇异值分解,提取奇异值作为故障特征信息;最后,将包络信号矩阵奇异值均值、奇异值熵和分离矩阵奇异值进行特征层信息融合作为机械设备的故障特征信息。将该方法应用于液压齿轮泵可以有效地提取机械设备盲特征信息。  相似文献   

14.
针对高速道岔裂纹伤损特征提取及状态监测问题,提出一种基于集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异熵和最小二乘支持向量机(least square support vector machine,简称LSSVM)的高速道岔裂纹伤损检测方法。首先,通过EEMD方法将非平稳的道岔振动信号自适应地分解为有限个基本模态分量(intrinsic mode function,简称IMF),每个IMF包含了原信号不同的特征尺度;然后,利用相关性分析筛选出与原始信号相关性最大的若干个IMF,计算所筛选IMF分量的奇异熵构成特征向量;最后,将多测点数据融合后的奇异熵特征向量输入LSSVM进行训练与测试,从而判断道岔的工作状态和伤损类型。模拟道岔裂纹伤损实验平台的振动信号分析及实验结果表明,在信噪比高于20dB时,该方法受噪声影响小,算法稳定性好,能有效地用于道岔裂纹伤损检测。  相似文献   

15.
针对齿轮故障的非线性、非稳定性特点和单个分类器在故障诊断中准确率低的问题,提出了一种基于变分模态分解(VMD)和随机森林(RF)的齿轮故障识别方法。首先,采用变分模态分解将振动信号分解成有限个本征模态函数(IMFs),并与总体平均经验模态分解对比其分解效果;其次,计算各模态函数的能量熵,将能量熵作为评判齿轮状态的标准,构建特征向量;最后,将特征向量输入随机森林进行故障分类。结果表明,与支持向量机(SVM)识别方法对比,该方法具有较强的学习能力以及较高的诊断精度。  相似文献   

16.
针对转子故障信号的非平稳性以及敏感故障特征无法有效提取的问题,将变分模态分解(variational mode decomposition,VMD)的Volterra模型和奇异值熵相结合,提出一种故障诊断方法。对影响VMD分解准确性的参数选取方法进行了深入研究,给出了相关问题的解决策略。首先,对不同工况下转子实测信号进行VMD分解,利用能量熵增量选取对故障特征敏感的固有模态函数(intrinsic mode function,IMF)进行相空间重构,以建立Volterra自适应预测模型,将模型参数作为初始特征向量矩阵。然后,对初始特征向量进行奇异值分解以获取奇异值熵和奇异值特征向量矩阵,用于描述转子的故障特征。最后,采用模糊C均值(fuzzy c-means,FCM)算法对转子工作状态和故障类型进行识别。试验结果表明,所提方法可有效实现转子故障的特征提取及类型识别。通过同经集合经验模态分解(ensemble empirical mode decomposition,EEMD)相比,证明了该方法具有更有效的故障特征提取性能,是一种可行的方法。  相似文献   

17.
针对滚动轴承振动信号非平稳非线性的特征,提出一种基于加权排列熵和差分进化算法优化极限学习机(DE-ELM)的滚动轴承故障诊断方法。首先利用自适应噪声的完全集合经验模态分解处理轴承振动信号得到固有模态函数(IMF),然后计算主要IMF分量的加权排列熵组成故障特征向量,最后利用差分优化算法(DE)优化极限学习机隐含层输入权值和偏置,并将故障特征向量作为DE-ELM的输入。实验证明,加权排列熵能够精确提取故障特征,DE-ELM算法能有效提高故障分类精度。与多种方法相比,该方法更加准确可靠。  相似文献   

18.
Aiming at the non-stationary features of the roller bearing fault vibration signal,a roller bearing fault diagnosis method based on improved Local Mean Decomposition(LMD)and Support Vector Machine(SVM)is proposed.In this paper,firstly,the wavelet analysis is introduced to the signal decomposition and reconstruction;secondly,the LMD method is used to decompose the reconstruction signal obtained by the wavelet analysis into a number of Product Functions(PFs)that include main fault characteristics,thus,the initial feature vector matrixes could be formed automatically;Thirdly,by applying the Singular Value Decomposition(SVD)techniques to the initial feature vector matrixes,the singular values of the matrixes can be obtained,which can be used as the fault feature vectors of the roller bearing and serve as the input vectors of the SVM classifier;Finally,the recognition results can be obtained from the SVM output.The results of analysis show that the proposed method can be applied to roller bearing fault diagnosis effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号