首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, light‐controlled bubble‐propelled single‐component metal oxide tubular microengines have for the first time been demonstrated. For such a simple single‐component TiO2 tubular microengine in H2O2 aqueous solution under UV irradiation, when the inner diameter and length of the tube are regulated, the O2 molecules will nucleate and grow into bubbles preferentially on the inner concave surface rather than on the outer surface, resulting in a vital propulsion of the microengine. More importantly, the motion state and speed can be modulated reversibly, fast (the response time is less than 0.2 s) and wirelessly by adjusting UV irradiation. Consequently, the as‐developed TiO2 tubular microengine promises potential challenged applications related to photocatalysis, such as “on‐the‐fly” photocatalytic degradation of organic pollutes and photocatalytic inactivation of bacteria due to the low cost, single component, and simple structure, as well as the facile fabrication in a large‐scale.  相似文献   

2.
An electrochemical approach for manufacturing light‐driven nanostructured titanium dioxide (TiO2) microengines with controlled spatial architecture for improved performance is reported. The microengines based on microscale arrays of TiO2 nanotubes with variable (50–120 nm) inner diameter show a quasi‐ordered arrangement of nanotubes, being the smallest tubular entities for catalytic microengines reported to date. The nanotubes exhibit well defined crystalline phases depending upon the postfabrication annealing conditions that determine the microengines' efficiency. When exposed to UV‐light, the microarrays of TiO2 nanotubes exhibiting conical internal shapes show directed motion in confined space, both in the presence and absence of hydrogen peroxide. In the former case, two different motion patterns related to diffusiophoresis and localized nanobubble generation inside of the tubes due to the photocatalytic decomposition of H2O2 are disclosed. Controlled pick‐up, transport, and release of individual and agglomerated particles are demonstrated using the UV light irradiation of microengines. The obtained results show that light‐driven microengines based on microarrays of TiO2 nanotubes represent a promising platform for controlled micro/nanoscale sample transportation in fluids as well as for environmental applications, in particular, for the enhanced photocatalytic degradation of organic pollutants due to the improved intermixing taking place during the motion of TiO2 microengines.  相似文献   

3.
The phenolic compound p-hydroxybenzoic acid is very common in a great variety of agroindustrial wastewaters (olive oil and table olive industries, distilleries). The objective of this work was to study the photocatalytic activity of TiO2 towards the decomposition of p-hydroxybenzoic acid. In order to demonstrate the greater oxidizing power of the photocatalytic system and to quantify the additional levels of degradation attained, we performed experiments on the oxidation of p-hydroxybenzoic acid by UV radiation alone and by the TiO2/UV radiation combination. A kinetic model is applied for the photooxidation by UV radiation and by the TiO(2)/UV system. Experimental results indicated that the kinetics for both oxidation processes can be fitted well by a pseudo-first-order kinetic model. The second oxidation process can be explained in terms of the Langmuir-Hinshelwood kinetic model. The values of the adsorption equilibrium constant, K(pHB), and the second order kinetic rate constant, k(c), were 0.37 ppm(-1) and 6.99 ppm min(-1), respectively. Finally, a comparison between the kinetic rate constants for two oxidation systems reveals that the constants for the TiO2/UV system are clearly greater (between 220-435%) than those obtained in the direct UV photooxidation.  相似文献   

4.
This study investigates the photocatalytic degradation of p-phenylenediamine (PPD) with titanium dioxide-coated magnetic poly(methyl methacrylate) (TiO2/mPMMA) microspheres. The TiO2/mPMMA microspheres are employed as novel photocatalysts with the advantages of high photocatalytic activity, magnetic separability, and good durability. The scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and transmission electron microscopy (TEM) images of the TiO2/mPMMA microspheres are used to characterize the morphology, element content, and distribution patterns of magnetite and TiO2 nanoparticles. The BET-specific surface area and saturation magnetization of the TiO2/mPMMA microspheres are observed as 2.21 m(2)/g and 4.81 emu/g, respectively. The photocatalytic degradation of PPD are performed under various experimental conditions to examine the effects of initial PPD concentration, TiO2/mPMMA microsphere dosage, and illumination condition on the eliminations of PPD and chemical oxygen demand (COD) concentrations. Good repeatability of photocatalytic performance with the use of the TiO2/mPMMA microspheres has been demonstrated in the multi-run experiments. The photocatalytic kinetics for the reductions of PPD and COD associated with the initial PPD concentration, UV radiation intensity, and TiO2/mPMMA microsphere dosage are proposed. The relationships between the reduction percentages of COD and PPD are clearly presented.  相似文献   

5.
Meso-and macro-porous TiO(2) were synthesized by ultrasonic induced solvothermal method. Octadecylamine as a soft template was used to direct the formation of porous structure. The as-prepared porous TiO(2) was characterized by low angle and wide angle X-ray diffraction, N(2) adsorption-desorption isotherms and BET surface area. The energy influence of ultrasound and heat and concentration of nitric acid for post extraction on formation of porous structure were investigated. The photocatalytic activities of TiO(2) were investigated by degrading toluene gas under UV light. The results revealed that proper energy facilitates the formation of porous structure and too low concentration of nitric acid cannot extract template from pores. The photocatalytic activities of TiO(2) with porous structure are higher than those of nonporous ones.  相似文献   

6.
Photocatalytic TiO(2) deposition by chemical vapor deposition   总被引:6,自引:0,他引:6  
Dip-coating, spray-coating or spin-coating methods for crystalline thin film deposition require post-annealing process at high temperature. Since chemical vapor deposition (CVD) process is capable of depositing high-quality thin films without post-annealing process for crystallization, CVD method was employed for the deposition of TiO(2) films on window glass substrates. Post-annealing at high temperature required for other deposition methods causes sodium ion diffusion into TiO(2) film from window glass, resulting in the degradation of photocatalytic efficiency. Anatase-structured TiO(2) thin films were deposited on window glass by CVD, and the photocatalytic dissociation rates of benzene with CVD-grown TiO(2) under UV exposure were characterized. As the TiO(2) film deposition temperature was increased, the (112)-preferred orientations were observed in the film. The (112)-preferred orientation of TiO(2) thin film resulted in a columnar structure with a larger surface area for benzene dissociation. Obviously, benzene dissociation rate was maximum when the degree of the (112) preferential orientation was maximum. It is clear that the thin film TiO(2) should be controlled to exhibit the preferred orientation for the optimum photocatalytic reaction rate. CVD method is an alternative for the deposition of photocatalytic TiO(2).  相似文献   

7.
TiO2 and Gd3+ doped TiO2 nanoparticles were prepared by sol-gel method and the materials were characterized by XRD, TEM, SEM-EDX, BET, FT-IR, UV-Vis absorption, and Raman spectral analysis. The photocatalytic activity of nano TiO2 and Gd/TiO2 nanoparticles was evaluated using a model pollutant propoxur, a carbamate pesticide, in a batch type UV photoreactor. The results revealed higher photocatalytic activity for Gd/TiO2 nanoparticles than both TiO2 nanoparticles and commercial TiO2 (Degussa P-25). The enhanced photocatalytic activity of Gd/TiO2 relative to TiO2 is attributed to its increased band gap energy as evidenced from the blue shift to shorter wavelength observed in the UV-Vis abso4ption spectra. The recombination rate of photogenerated electron-hole pair decreased due to increase in the band gap, which enhanced the charge transfer efficiency of Gd/TiO2 nanoparticles. Gd3+ with its half filled 7 f subshell facilitated rapid electron transfer at solid-liquid interface by shallowly trapping the electrons. Among the various dopant level of gadolinium, 0.3 wt% Gd/TiO2 nanoparticles showed higher activity than others due to its higher surface area.  相似文献   

8.
Formation of hybrid Ag-TiO(2) nanocrystals (NCs) in which Ag clusters are uniformly deposited on individual TiO(2) NC surface has been achieved by using hydrophobic surfactant-capped TiO(2) NCs in combination with a photodeposition technique. The population of Ag clusters on the individual TiO(2) NC surface can be controlled by the degree of hydrophobicity (e.g., the number of vacant sites) on the TiO(2) NC surface while their size may be altered simply by varying irradiation time. A reversible change in color of the resulting hybrid Ag-TiO(2) NCs is induced by alternating UV light and visible-light illumination; however, the size and population of Ag clusters on TiO(2) NCs are almost unchanged. Furthermore, these materials also exhibit much higher photocatalytic performance as compared to that of Ag supported on commercial TiO(2)-P25.  相似文献   

9.
以TiCl4为钛源,SAMs为模板,Fe(NO3)3·9H2O为铁源,采用自组装方法于低温液相反应体系中分别成功地制备出大面积二维结构纳米的纯净和掺铁Ⅱ0:薄膜,通过拉曼光谱、高分辨透射电镜、荧光发射光谱等方法对样品进行表征,研究紫外光和可见光下纳米薄膜对甲基橙溶液的光催化降解过程以及紫外光下对甲苯的降解效率,探讨了掺铁后对TiO2:的光催化活性的影响,结果表明,此方法不需要高温煅烧即可得到高催化活性的以金红石为主的掺铁二氧化钛纳米薄膜。  相似文献   

10.
High ultraviolet(UV)stability and low dark current(Idark)are necessary for high-quality perovskite photodetectors(PDs).TiO2 thin film is known as effective electron-transport-layer(ETL)for perovskite devices.However,common spin-coated TiO2 ETLs endow many surface defects and have strong UV pho-tocatalytic effect to decompose perovskite materials,resulting in inferior stability of devices.In this work,TiO2 bilayer film(Bi-TiO2)has been fabricated by combining spin-coating and atomic-layer-deposition process and its positive effects on UV stability and Idark of Cs2AgBiBr6-based PDs have been revealed for the first time.It is demonstrated that Bi-TiO2 possesses fewer surface defects and smoother morphology with type Ⅱ band alignment,which is beneficial to suppress photocatalytic activity of TiO2 and reduce carrier recombination at the interface.After accelerated strong UV aging treatment,the PD with Bi-TiO2 maintains excellent performance,whereas the PD with spin-coated TiO2 film dramatically deteriorate with on-off ratio drops from~102 to~2.Besides,the Idark of PD remarkably decreases from~10-8 A to~10-10 A after bilayer optimization.Furthermore,we have integrated the corresponding PDs into a self-built imaging system adopting diffuse reflection mode.This work suggests a feasible approach to fabricate TiO2/Cs2AgBiBr6-based PDs with remarkable UV tolerance for imaging applications.  相似文献   

11.
Ag/TiO2薄膜结构和光催化性能研究   总被引:18,自引:0,他引:18  
采用溶胶-凝胶技术制备了Ag掺杂的TiO2薄膜.用XRD、氮吸附法、UV-VIS-NIR分光光度计以及XPS对Ag掺杂后TiO2薄膜结构的变化进行了分析;用分光光学法通过在紫外光照下分解亚甲基蓝的实验比较了TiO2薄膜与Ag/TiO2薄膜的光催化性能.结果发现,掺杂适量的Ag有助于TiO2薄膜光催化氧化性能的提高,原因在于:(1)Ag通过引入耗尽层提高了TiO2的电荷分离能力,并吸引空穴向薄膜表面移动,结果使薄膜表面空穴的浓度提高,薄膜光催化效率提高;(2)Ag减小了TiO2粒子的粒径,使TiO2禁带宽度增大,薄膜光催化氧化的能力提高;(3)Ag掺杂后,TiO2薄膜表面对-OH基和水的吸附增加,使光照后TiO2薄膜表面活性自由基·OH的浓度增加,空穴向薄膜所吸附物质的转移能力提高.  相似文献   

12.
The photocatalytic degradation of terbufos in aqueous suspensions was investigated by using titanium dioxide (TiO(2)) as a photocatalyst. About 99% of terbufos was degraded after UV irradiation for 90 min. Factors such as pH of the system, TiO(2) dosage, and presence of anions were found to influence the degradation rate. Photodegradation of terbufos by TiO(2)/UV exhibited pseudo-first-order reaction kinetics, and a reaction quantum yield of 0.289. The electrical energy consumption per order of magnitude for photocatalytic degradation of terbufos was calculated and showed that a moderated efficiency (E(EO)=71 kWh/(m(3)order)) was obtained in TiO(2)/UV process. To obtain a better understanding of the mechanistic details of this TiO(2)-assisted photodegradation of terbufos with UV irradiation, the intermediates of the processes were separated, identified, and characterized by the solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) technique. The probable photodegradation pathways were proposed and discussed.  相似文献   

13.
The crystallinity, surface morphology, porosity and band structure of semiconducting catalytic materials greatly influence their photocatalytic efficiency. Here, the semiconducting ZnOs were synthesized with three different synthetic routes of precipitation, solution combustion and direct calcination of precursor. All the synthesized catalysts were characterized thoroughly by X-ray diffraction, Field emission scanning electron microscopy, diffuse reflectance spectroscopy, Brunauer–Emmett–Teller surface area and photoluminescence. The synthesized catalysts show different nano-crystallinity, morphology, surface properties and band structure depending on the synthetic methods. All the synthesized catalysts were explored for photocatalytic degradation of methylene blue under visible and UV light illumination. The correlation between the physical properties and catalytic efficacy were established. The complete mechanism for the photocatalytic degradation of methylene blue was also proposed. The typical band structure and the longer life of excitons due to the presence of defects in solution combustion synthesized ZnO overpowered the other physical properties in influencing the visible and UV light assisted methylene blue degradation. This work shades light on the key controlling factors of a photocatalytic reactions and provides simple strategy for the development of efficient photocatalysts for solar energy conversion applications in solving energy crisis and environmental pollution problems.  相似文献   

14.
We report photocatalytic degradation studies on Navy Blue HE2R (NB) dye on significant details as a representative from the class of azo dyes using functional nanosystems specifically designed to allow a strong photocatalytic activity. A modified sol-gel route was employed to synthesize Au and gamma-Fe2O3 modified TiO2 nanoparticles (NPs) at low temperature. The attachment strategy is better because it allows clear surface of TiO2 to remain open for photo-catalysis. X-ray diffraction, Raman and UV-VIS spectroscopy studies showed the presence of gold and iron oxide phases along-with the anatase TiO2 phase. TEM studies showed TiO2 nanocomposite particles of size approximately 10-12 nm. A detailed investigation on heterogeneous photocatalytic performance for Navy Blue HE2R dye was done using the as-synthesized catalysts Au:TiO2 and gamma-Fe2O3:TiO2 in aqueous suspension under 8 W low-pressure mercury vapour lamp irradiation. Also, the photocatalytic degradation of Amranth and Orange G azo dyes were studied. The surface modified TiO2 NPs showed significantly improved photocatalytic activity as compared to pure TiO2. Exposure of the dye to the UV light in the presence of pure and gold NPs attached TiO2 catalysts caused dye degradation of about approximately 20% and approximately 80%, respectively, in the first couple of hours. In the presence of gamma-Fe2O3 NPs attached TiO2, a remarkable approximately 95% degradation of the azo dye was observed only in the first 15 min of UV exposure. The process parameters for the optimum catalytic activity are established which lead to a complete decoloration and substantial dye degradation, supported by the values of the Chemical Oxygen Demand (COD) approximately 93% and Total Organic Carbon (TOC) approximately 65% of the treated dye solution after 5 hours on the employment of the UV/Au:TiO2/H2O2 photocatalytic process.  相似文献   

15.
TiO(2) was prepared by a hydrothermal method at a low temperature and used to degrade and mineralize dimethyl phthalate (DMP). TiO(2) was characterized by XRD, TEM, BET and UV-vis techniques. The characteristics of TiO(2) prepared by a hydrothermal method (h-t TiO(2)) included a good crystalline anatase phase, greater surface area, stronger absorption to UV light wavelength and lower agglomeration than TiO(2) prepared by a classic sol-gel method (s-g TiO(2)). The photocatalytic activity of h-t TiO(2) prepared under optimal hydrothermal condition (180°C for 10h) was 2.5 times higher than that of s-g TiO(2) in degrading DMP. The process of photocatalysis combined with UV irradiation and ozonation (TiO(2)/UV/O(3)) considerably improved the mineralization and degradation of DMP compared to photocatalysis combined with UV irradiation (TiO(2)/UV), ozonation combined with UV irradiation (UV/O(3)), and ozonation alone (O(3)). A kinetic study showed the mineralization in TiO(2)/UV/O(3) followed the Langmuir-Hinshelwood model.  相似文献   

16.
The electron beam (EB) irradiation effects of TiO2 deposited on carbon nanofibers (CNFs) were studied aiming the improvement of the photocatalytic activity. The EB irradiation contributed to an increase in crystallinity of the anatase resulting an improvement of the photocatalytic activity through the oxidation (ionization) of the doped TiO2 and leading to uniform distribution TiO2 particles on the CNFs surface. The photoactivity of the catalyst was measured by the decoloration of the methylene blue (MB) with time under UV irradiation.  相似文献   

17.
In this study, gold-loaded titanium dioxide was prepared by an impregnation method to investigate the effect of surface plasmon resonance (SPR) on photoactivity. The deposited gold nanoparticles (NPs) absorb visible light because of SPR. The effects of both the gold content and the TiO2 size of Au/TiO2 on SPR and the photocatalytic efficiency were investigated. The morphology, crystal structure, light absorption, emission from the recombination of a photoexcited electron and hole, and the degree of aggregation were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible-diffuse reflectance spectra (UV-VIS-DRS), photoluminescence (PL) spectroscopy, and turbidimetry, respectively. Photocatalytic activity was evaluated by the decolorization of methyl orange solution over modified titania under UV and UV/GLED (green light emitting diode) illumination. Au/TiO2 NPs exhibited an absorption peak (530-570 nm) because of SPR. The results of our photocatalytic experiments indicated that the UV-inducedly photocatalytic reaction rate was improved by simultaneously using UV and green light illumination; this corresponds to the adsorption region of SPR. Au/TiO2 could use the enhanced electric field amplitude on the surface of the Au particle in the spectral vicinity of its plasmon resonance and thus improve the photoactivity. Experimental results show that the synergistic effect between UV and green light for the improvement of photoactivity increases with increasing the SPR absorption, which in turn is affected by the Au content and TiO2 size.  相似文献   

18.
Fu N  Tang X  Li D 《Nanotechnology》2012,23(27):275704
The electron work function (EWF) is the minimum energy required to move an electron at the Fermi level from inside a conducting material to its surface with zero kinetic energy. This fundamental parameter is directly related to many chemical, physical, and mechanical properties of materials. In this work, variations in EWF of TiO(2) nanotube arrays under light illumination were monitored in situ using a Kelvin probe in order to study the photon-induced electron excitation in the TiO(2) nanotubular arrays upon illumination. It was shown that the EWF could be used to investigate the electron-hole separation and recombination, helping us to better understand the photo-activity of the photocatalytic material. This study has demonstrated that EWF provides an effective parameter for understanding of semiconductors' photo-activities with different views that may not be achieved using traditional techniques, such as diffuse reflection spectroscopy and photoelectrochemical measurement.  相似文献   

19.
A technology, microwave-assisted photocatalysis on TiO(2) nanotubes, which can be applied to degrade atrazine rapidly and completely, was investigated. TiO(2) nanotubes were prepared, and confirmed by XRD, TEM and ESR. Microwave-assisted photocatalytic degradation of atrazine in aqueous solution was investigated. The result indicates that atrazine is completely degraded in 5min and the mineralization efficiency is 98.5% in 20min, which is obviously more efficient than that by the traditional photocatalytic degradation methods. It may be attributed to the intense UV radiation generated by electrodeless discharge lamps under microwave irradiation, the increased number of OH, additional defect sites on TiO(2) under the irradiation of microwave and larger specific surface area of TiO(2) nanotubes which could adsorb more organic substances to degrade than TiO(2) nanoparticles. Along with the degradation of atrazine, the concentrations of Cl(-) and NO(3)(-) increase gradually. In 20min [Cl(-)] and [NO(3)(-)] are 3, 27.8mg/L, respectively, which are close to their stoichiometric values. The major intermediates of atrazine were identified by HPLC/MS and possible degradation pathways of atrazine in microwave-assisted photocatalysis on TiO(2) nanotubes were proposed.  相似文献   

20.
Sn(4+) doped and undoped nano-TiO(2) particles easily dispersed in water were synthesized without using organic solvent by hydrothermal process. Nanostructure-TiO(2) based thin films were prepared on flyswatter substrate, made with stainless steel, by dip-coating technique. The structure, surface and optical properties of the particles and thin films were characterized by element analysis and XRD, BET, SEM and UV/vis/NIR techniques. The photocatalytic performance of the films were tested for degradation of Malachite Green dye in solution under UV and vis-lights. The results showed that the coated flyswatter has a very high photocatalytic performance for the photodegradation of Malachite Green irradiated with UV and vis-lights. The results also proved that the hydrothermally synthesized nano-TiO(2) particles are fully anatase crystalline form and are easily dispersed in water, the coated surfaces are hydrophilic, and the doping of transition metal ion efficiently improved the degradation performance of TiO(2)-coated flyswatter. The photocatalytic performances determined at both irradiation conditions were very good and were almost similar to each other for Sn(4+) doped TiO(2)-coated flyswatter and it can be repeatedly used with increasing photocatalytic activity compared to undoped TiO(2)-coated flyswatter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号