首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘亚丽  揣成智 《塑料工业》2014,(11):30-33,59
采用聚己二酸对苯二甲酸丁二醇酯(PBAT)对交联聚丁二酸丁二醇酯(PBS)进行熔融共混改性研究,运用熔体流动速率仪、毛细管流变仪、偏光显微镜(POM)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)和电子万能拉力机等表征手段对共混物的流变性能、热性能、结晶性能和力学性能进行分析。结果表明,随着PBAT含量的增加,共混物的熔体黏度不断增加,结晶度下降,拉伸强度降低,断裂伸长率在PBAT质量分数为30%时达到300%,约为纯PBS的30倍,材料的韧性明显提高。  相似文献   

2.
将热塑性淀粉(TPS)与聚(对苯二甲酸丁二醇酯-己二酸丁二醇酯)(PBAT)挤出共混并注塑成型,制备了可完全生物降解的TPS/PBAT复合材料制品。采用扫描电子显微镜研究了注塑复合材料的层次结构与微观形态,测试了不同组分复合材料的性能和应力应变行为。结果表明:TPS在PBAT中呈皮芯结构分布,随含量增加逐渐由芯层向皮层分布。当含量为45%时,芯层到皮层形成均匀的以纤维为主的分散相形态,提高了复合材料的力学性能。加入TPS后会改变复合材料的形变行为,由类似半结晶聚合物的应力应变行为转变为屈服-冷拉行为。  相似文献   

3.
以聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)(PBAT)为共混组分,对羟基苯甲酸(PHA)为添加剂,利用转矩流变仪对聚酰胺6(PA 6)进行熔融共混改性,并采用差示扫描量热仪、热重分析仪和旋转流变仪对共混物的热行为和熔融流动性能进行了测试。结果表明:共混后PBAT组分产生了结晶行为,未添加改性剂PHA的PA 6/PBAT共混物热稳定性明显偏向于PA 6,而其流动性能则随共混比例变化相应靠近含量相对较多的组分;添加质量分数为2%的PHA可提高共混物的热稳定性,且热性能和流变性能相对较为稳定;合适的共混工艺为共混温度220℃,转矩流变仪转子转速50 r/min。  相似文献   

4.
PBS/PBAT共混型全生物降解材料的制备及其性能研究   总被引:1,自引:0,他引:1  
通过熔融共混法制备了聚丁二酸丁二醇酯(PBS)/聚己二酸对苯二甲酸丁二酯(PBAT)共混物,用熔体流动速率法、扫描量热法、X射线衍射、扫描电镜法及力学性能测试等手段研究了PBS/PBAT共混物的熔体流动性、结晶性能、力学性能以及共混物相容性。结果表明,随着PBAT含量的增加,PBS/PBAT共混体系的拉伸强度先升高后降低,断裂伸长率不断提高,冲击强度先降低后提高;当PBAT含量为20 %(质量分数,下同)时,与纯PBS相比,断裂伸长率提高10倍,冲击强度提高82 %,而拉伸强度仅仅降低6 %。  相似文献   

5.
聚对苯二甲酸-己二酸-丁二醇酯(PBAT),聚乳酸(PLA)和热塑性淀粉(TPS)通过熔融共混并挤出吹膜。固定PBAT的质量分数为50%,改变PLA和TPS的比例。对PBAT/PLA/TPS薄膜的力学性能、热性能、结晶行为、撕裂断面形态、阻水性和氧气渗透性进行了研究。结果表明,PBAT/PLA/TPS薄膜中PLA的冷结晶温度降低了约40℃,PLA的冷结晶能力增强。随着TPS含量的增加,PBAT/PLA/TPS薄膜的拉伸强度降低、断裂伸长率增加。通过扫描电子显微镜观察,PBAT/PLA/TPS薄膜表现为明显的韧性断裂。水接触角和氧气渗透性测试表明薄膜具有良好的应用性能。  相似文献   

6.
将玉米淀粉用甘油和水复配成的增塑剂增塑并在双螺杆挤出机挤出造粒成热塑性淀粉(TPS),然后与聚(对苯二甲酸丁二醇酯-己二酸丁二醇酯)(PBAT)及聚乳酸(PLA)一起通过熔融共混制备PBAT/PLA/TPS三元复合材料.结果 表明,当TPS配比为淀粉∶甘油∶水=70 phr∶30 phr∶15 phr时,PBAT/TP...  相似文献   

7.
将热塑性淀粉(TPS)与聚(对苯二甲酸丁二醇酯-己二酸丁二醇酯)(PBAT)熔融共混并挤出,制备了可完全生物降解的TPS/PBAT复合材料.采用X射线衍射仪和扫描电子显微镜研究了复合材料的微观结构与形态,测试了不同组分复合材料的性能.结果表明:加入PBAT后,复合材料的熔体流动性明显提高;拉伸强度从6.36 MPa先下降到3.31 MPa, 然后升高到12.98 MPa; PBAT的加入抑制了支链淀粉分子的重结晶, 降低了复合材料的吸水率.  相似文献   

8.
选用甲基丙烯酸缩水甘油酯(GMA)作为聚对苯二甲酸-己二酸丁二醇酯(PBAT)与聚乳酸(PLA)共混改性剂,采用转矩流变仪与差示扫描量热仪(DSC)研究GMA对PBAT/PLA共混物黏度及结晶性能的影响,并采用Jeziorny法对其进行结晶动力学分析。结果表明,在PBAT中加入PLA可以促进PBAT结晶,当PLA质量分数为10%时结晶速率最高;保持PBAT/PLA=8∶2不变,在PBAT/PLA共混物中加入GMA,GMA在共混物中起到增塑作用,使共混物黏度降低,加工性能提高,共混物中PLA玻璃化转变温度降低,PBAT结晶度提高,结晶速率下降。  相似文献   

9.
采用聚丁二酸丁二醇酯(PBS)对聚甲醛(POM)进行改性,经共混纺丝制得POM/PBS共混纤维,研究了POM/PBS共混体系的流变行为以及共混纤维的热稳定性、结晶结构和力学性能。结果表明:PBS对POM有一定的增塑作用,可以降低POM的黏度和剪切敏感性;添加PBS可降低共混体系的熔点、结晶温度和结晶度,POM的熔点为168.6℃,结晶温度为145.6℃,结晶度为78.6%,而加入PBS质量分数20%的POM/PBS共混体系的熔点为165.7℃,结晶温度为139.7℃,结晶度为68.9%;PBS增大了POM的球晶尺寸,但PBS质量分数超过15%时,由于发生相分离而产生PBS的环带球晶;当PBS质量分数为10%时,POM/PBS共混纤维力学性能最好,拉伸强度和弹性模量分别达到1 264 MPa,9.5 GPa,相比纯POM纤维分别增加了25.8%和15.9%。  相似文献   

10.
采用熔融共混法制备聚对苯二甲酸己二酸丁二醇酯(PBAT)和L聚乳酸(PLLA)共混薄膜,探讨不同PLLA添加量(质量分数分别为10 %、20 %、30 %)对共混薄膜力学性能、热学性能、气体阻透性能的影响。结果表明,PBAT和PLLA共混属于不相容体系;随着PLLA的添加,共混薄膜的O2和CO2透过性能逐渐降低;当PLLA含量增加到30 %时,O2 透过系数(PO2)和CO2透过系数(PCO2)分别较PBAT薄膜降低了34.2 %和70.8 %,CO2/O2透过比(PCO2/PO2)由纯PBAT的10.20降低为4.52,提高了薄膜阻透性能;PLLA的添加改善了PBAT极易变形变曲现象。  相似文献   

11.
以熔融共混法制备了聚对苯二甲酸-己二酸丁二醇酯/聚乳酸/滑石粉(PBAT/PLA/Talc)复合材料,研究了Talc含量对复合材料力学性能、微观结构、热力学性能及流变性能的影响。结果表明:随着Talc含量的增加,PBAT/PLA/Talc的拉伸强度先下降后上升,标称应变由22.91%升至241.54%,再降至35.11%;弯曲模量从1.57 GPa逐渐提升至2.61 GPa。随着Talc含量的增大,PBAT/PLA/Talc复合材料的结晶温度升高,熔融温度有所降低。体系的黏度随Talc含量的增加呈现先下降后上升的趋势,Talc含量为5份时,PBAT/PLA/Talc复合材料的黏度最低。因此,Talc可改善PBAT、PLA的界面相容性,对复合材料熔体流动具有较大影响。  相似文献   

12.
以马来酸酐(MAH)和聚己二酸-对苯二甲酸丁二酯(PBAT)为原料采用熔融接枝法合成相容剂聚己二酸-对苯二甲酸丁二酯接枝马来酸酐(PBAT-g-MA),并通过熔融挤出共混的方法制备了热塑性淀粉(TPS)/聚己二酸-对苯二甲酸丁二酯(PBAT)共混合金。研究了PBAT-g-MA用量对TPS/PBAT共混材料力学性能、热性能、微观形貌、加工性能的影响。结果表明,PBAT-g-MA提高了TPS/PBAT二元共混合金的力学性能,当PBAT-g-MA质量分数为7%时,材料的拉伸强度为9.8 MPa,比未添加增容剂的共混材料提高了92.1%,断裂伸长率为64.3%,比未添加增容剂的共混材料提高了83.7%,SEM显示PBAT-g-MA大大改善了TPS/PBAT二元共混合金的界面相容性。  相似文献   

13.
以环氧类增容剂(REC)为增容剂,采用双螺杆挤出机熔融共混制备聚乳酸(PLA)/聚对苯二甲酸己二酸丁二醇酯(PBAT)共混物。研究了增容剂对共混体系微观结构、力学性能和热性能的影响。结果表明,添加适量REC可以提高PLA与PBAT的相容性,改善PLA/PBAT共混体系的综合力学性能;REC用量为1.4份时共混体系呈现出良好的相容性,此时共混物冲击强度由268 kJ/m2增加到621 kJ/m2、断裂伸长率提高由222 %增加到357 %。  相似文献   

14.
采用熔融共混法制备了聚甲基乙撑碳酸酯/聚丁二酸丁二醇酯(PPC/PBS)复合材料,通过力学性能、DSC、TG研究了PBS用量对PPC/PBS共混体系力学性能、结晶性能、热稳定性的影响。结果表明:PBS的加入提高了PPC/PBS共混体系的拉伸强度、缺口冲击强度和热稳定性。  相似文献   

15.
利用十六烷基三甲氧基硅烷(HDTMS)对淀粉进行偶联改性后,通过熔融挤出得到热塑性淀粉(TPS),并将其与聚己二酸/对苯二甲酸丁二醇酯(PBAT)复配后吹膜,制备了PBAT/TPS复合膜材料,并探讨了HDTMS含量与TPS耐热性能、流变性能及PBAT/TPS复合膜疏水性能和力学性能的关系。结果发现,加入HDTMS后TPS加工性能得到改善、淀粉基体耐热性能更高,但增塑剂更易析出;加入1份HDTMS后,PBAT/TPS复合膜材料疏水性能得到改善,接触角提高到113.2°,再继续增加HDTMS含量后,接触角基本保持在104°~106°;PBAT/TPS复合膜材料拉伸强度随HDTMS含量的增加先提高后降低,当HDTMS含量为3份时拉伸强度达10.29 MPa。  相似文献   

16.
以玉米淀粉为原料,通过挤出加工制得热塑性淀粉(TPS)。再将TPS与聚丁二酸丁二醇酯(PBS)共混,加入亚麻纤维强化,制得复合材料。分析了TPS试样和复合材料试样的断面微观结构,研究了PBS含量、纤维添加量和硅烷偶联剂(KH-550)对TPS/PBS共混物力学性能的影响。进一步通过正交试验分析优化了复合材料的制备工艺参数。实验研究表明,丙三醇是制备TPS的合适的增塑剂,挤出加工能够较好地改变淀粉分子结构,使其具有热塑性。共混物的力学性能随着PBS含量的增加而增加。亚麻纤维和KH-550都能够明显地增加复合材料的拉伸强度和弯曲强度,但是复合材料的断裂伸长率降低。对于复合材料的拉伸强度来说,最优化工艺为:PBS质量分数60%、纤维质量分数0.5%、偶联剂质量分数0.2%,注塑加工温度(注塑机温控区温度)为155、160、160、150、145℃。  相似文献   

17.
研究了双官能团相容剂KT20对聚乳酸(PLA)与对苯二甲酸己二酸丁二醇酯(PBAT)共混物的力学性能、热性能、动态流变性能和微观形貌的影响。红外结果显示,马来酸酐与环氧官能团能够与PLA和PBAT发生化学键合;冷结晶温度的变化表明,KT20能够抑制PBAT对PLA冷结晶的促进作用;动态流变曲线说明,KT20能够改善PLA和PBAT的相容性; SEM照片中界面形态的变化提供了KT20能提高共混物两相体系界面结合力的证据;适当用量的KT20可以显著提高材料的综合力学性能。  相似文献   

18.
以聚乙二醇二缩水甘油醚(PEGDGE)为相容剂与聚乳酸(PLA)和聚己二酸-对苯二甲酸丁二醇酯(PBAT)通过转矩流变仪进行熔融共混。通过傅里叶变换全反射红外光谱仪(ATR-FTIR)、扫描电子显微镜(SEM)、差示扫描量热仪(DSC)等探究了不同含量PEDGDE对PLA/PBAT共混体系断面微观形貌、热性能、力学强度等性能的影响。结果表明,与未加PEGDGE的PLA/PBAT的共混体系相比,加入3份PEGDGE时,材料的断裂伸长率可由14.6%增加至38.9%,是PLA/PBAT的2.7倍。加入PEGDGE后,PLA/PBAT共混体系冷结晶向低温移动,且加入5份PEGDGE时,结晶度有明显提升。  相似文献   

19.
聚己二酸-对苯二甲酸丁二醇酯(PBAT)作为生物可降解材料在包装领域应用广泛,但存在耐热稳定性差、易受环境影响发生老化等问题。本文采用熔融共混的方法,制备了不同添加比的端羟基硅油(SO)/PBAT复合材料,探讨耐热添加助剂对PBAT热稳定性和可降解性能的影响。结果表明,复合材料具有更好的耐热性,当SO质量分数达0.6%时,最终分解温度提高到411.02℃,热分解速率较纯PBAT降低了10.34%。SO的添加显著延缓了PBAT的热氧老化,SO/PBAT降解稳定性得到提升,热氧降解30 d后0.6%SO/PBAT的拉伸强度保持率较纯PBAT提高了27.48%,质量损失率较纯PBAT降低了20.78%。此外,复合材料的分子量下降幅度减缓,低场核磁反演曲线说明SO的添加并未改变PBAT的热氧老化机理。  相似文献   

20.
以聚对苯二甲酸己二酸丁二醇酯(PBAT)为基材,以改性碳酸钙(CaCO3)为填料,采用熔融共混吹膜方式制备PBAT/改性CaCO3复合材料,研究改性CaCO3对PBAT薄膜性能的影响。结果表明:改性CaCO3的加入提高复合材料的结晶温度、熔融温度以及结晶度。采用2%硅烷偶联剂和2%硬脂酸复配改性CaCO3,PBAT/改性CaCO3复合材料(M-4)结晶度最高且力学性能优异,横纵向拉伸强度分别为26.51 MPa和36.07 MPa;横纵向断裂伸长率分别为839.33%和462.44%;横纵向直角撕裂负荷分别为2.10和3.07;横纵向直角撕裂强度分别为101.40和136.01。2%铝酸酯和2%硬脂酸复配改性的CaCO3提升复合材料的水蒸气阻隔性能,复合材料的水蒸气透过率较纯PBAT降低40.09%,水蒸气透过系数降低47.54%。加入改性CaCO3,复合材料的储能模量、损耗模量和复数黏度均有所提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号