共查询到20条相似文献,搜索用时 0 毫秒
1.
《低温学》2015
This paper presents a review of the recent development of moving-coil linear compressors for space Stirling-type pulse tube cryocoolers in National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences. The design, manufacture and assembly methods are described with special emphases laid on linear motor, clearance seal, flexure springs, dual-opposed configuration and flexible design. Several key components are focused on and studied in a detailed way in terms of material selection, geometry design, configuration optimization, manufacture approaches and optimal assembly to achieve high efficiency, easy producibility, high reliability and long life. Experiences from the forerunners and the state-of-the-art approaches are reviewed and used for useful references, while our own successful experiences are emphasized and discussed in more detail together with some lessons learned. A series of compressors for space applications have been worked out with high confidence of reliability and long life expectation, which achieve input capacities of 0–500 W with motor efficiencies of 74.2–83.6%. Single-stage pulse tube cryocoolers driven by these compressors have already covered the temperature range of 25–200 K with cooling capacities varying from milliwatt levels to over 30 W. The commonly-used compressor types and purposes, performance characteristics and their applications in typical space cryocooler projects are also presented. 相似文献
2.
在最近研制的1台直线压缩机驱动的两极脉管制冷机的初步试验的基础上,对直线压缩机的线圈重新进行了设计和制作,解决了由于绕制圈数过多而无法输入足够电功率的问题。对冷头的热端法兰及回热器热端热交换器进行了改进,采用了微槽式水冷却器,解决了压缩热无法得到充分冷却引起的制冷机热端温度过高的问题。改进后制冷机的性能得到了显著的提高,在2.0 MPa充气压力和40 Hz频率的条件下,该制冷机获得了14.2 K的最低制冷温度。并且,第一级和第二级在97.8 K和34.9 K时,分别具有2.5 W和1 W的制冷量。 相似文献
3.
4.
《低温学》2018
Vuilleumier (VM) type pulse tube cryocooler (PTC) utilizes the thermal compressor to drive the low temperature stage PTC. This paper presents the latest experimental results of a cryogen-free VM type PTC that operates in the temperature range below 10 K. Stirling type pre-coolers instead of liquid nitrogen provide the cooling power for the thermal compressor. Compared with previous configuration, the thermal compressor was improved with a higher output pressure ratio, and lead and HoCu2 spheres were packed within the regenerator for the low temperature stage PTC for a better match with targeted cold end temperature. A lowest no-load temperature of 7.58 K was obtained with a pressure ratio of 1.23, a working frequency of 3 Hz and an average pressure of 1.63 MPa. The experimental results show good consistency in terms of lowest temperature with the simulation under the same working condition. 相似文献
5.
《低温学》2018
Recovering the expansion power in pulse tube cryocooler is of great utility in improving cooling efficiency. Using a second-stage cooler after a primary cooler to produce extra cooling power is an effective way especially when the cooling temperature is not very low. In the configuration, the two coolers are connected by a displacer which is used as a phase shifter. In this paper, experimental investigations were conducted to study this system. Firstly, the performance of the overall system and separated cooler was respectively presented. To better understand the displacer, phase relation, mechanical resistance and displacement were then clarified. In addition, the power consumption distribution of the cascade cryocooler was discussed. Finally, both numerical and experimental comparisons were made on the displacer-type and tube-type cryocooler. The experimental results show that the displacer-type cryocooler has superior performance due to the better phase-modulation capability and less power loss. With the input electric power of 1.9 kW and cooling temperature of 130 K, the overall system achieved a cooling power of 371 W and a relative Carnot efficiency of 24.5%. 相似文献
6.
Thermoacoustic theory is a powerful tool to understand the working mechanism of regenerative thermodynamic systems. In this paper, a modified thermoacoustic model is employed to design three single-stage Stirling-type pulse tube cryocoolers. The first one (PTC-10) is designed with in-line configuration and the second one (CPTC-10) is designed with co-axial configuration. Both of them are able to provide about 10 W cooling power at 77 K with a relative Carnot efficiency of about 18.6%. The third one (PTC-20), designed with in-line configuration, has a twice cross section area of the PTC-10. It can provide more than 20 W cooling power at 77 K with a relative Carnot efficiency of 22%. 相似文献
7.
In order to explore the lowest attainable refrigeration temperature and improve cooling performance at temperatures around 20 K for a single-stage G-M type pulse tube cryocooler (PTC), numerical and experimental studies were performed. The National Institute of Standards and Technology (NIST) numerical model known as REGEN was applied to the simulation of a G-M type PTC for the first time. Based on the calculation results, a single-stage G-M type PTC was designed, fabricated and tested. The performance improvement of the regenerator in the temperature range of 10-80 K was investigated. The calculations predicted a lowest temperature of 10 K. A lowest temperature of 10.6 K was achieved experimentally with an input power of 7.5 kW, which is the lowest temperature ever achieved by a single-stage PTC. Further more, the cryocooler can provide a cooling power of 20 W at 20.6 K and 39.5 W at 30 K, respectively. 相似文献
8.
为了既能降到液氢温区又能确保制冷机的温度稳定性,开展了仅采用长颈管,不使用双向进气进行调相的单级高频多路旁通型脉冲管制冷机的实验研究。首先用数值计算的方法获得了多路旁通开度是否最佳的判据。研制出的制冷机在充气压力1.73MPa,输入电功220W时,无负荷最低制冷温度能够降到23.6K,为目前所报道的在没有双向进气时单级高频脉冲管制冷机获得的最低温度。在达到稳定状态后,制冷机性能稳定,温度波动幅值小于0.1K。在220W输入电功下,能够在29.2K获得0.516W,34.3K获得1.0W的制冷量。 相似文献
9.
开发了基于LabVIEW的脉冲管制冷机智能测试与控制系统,系统通过温度、压强、气体流速、活塞位置等传感器和电源、加热等执行器实现了自定义实验流程、机器判稳、自动扫频、3种反馈调节方式测量性能、过热保护、撞缸保护、数据集中显示并实时存储、实时运算性能参数并图形化显示指导改进等自动化智能化功能。在不同的制冷机上分别运用系统完成了自动扫频+控功率控加热测温性能测试+自动复温、自定义实验流程+控功率控加热测温性能测试、自定义实验流程+控功率控温测加热性能测试共3组实验,与手动测试对比,证明了智能系统可以为测试和实验提供方便。 相似文献
10.
A one-dimensional finite volume discretization method is proposed and is implemented as a computer program for the modeling of a family of stirling type Pulse Tube Cryocoolers (PTC). The set of unsteady, one-dimensional, viscous compressible flow equations are written in a general form such that all, porous and non-porous, sections of the PTC can be modeled with these governing equations. In present work, temperature dependency of thermo-physical properties are taken into account as well as the heat transfer between the working fluid and the solid parts, and heat conductions of the gas and solid. The simulation tool can be used to model both the inertance tube type and the orifice type cryocoolers equipped with regenerators made up of different matrix constructions. The PTC might have an arbitrary orientation with respect to the gravitational field. By using the computer program, an orifice type and an inertance tube type pulse tube cryocooler are simulated. Diameter of the orifice and length of the inertance tube are optimized in order to maximize the coefficient of performance. Furthermore, the cooling power of the two types is obtained as a function of the cooling temperature. The behavior of thermodynamic parameters of the inertance tube PTC is investigated. Mean cyclic values of the parameters are presented. 相似文献
11.
《低温学》2014
A 1 K closed-cycle cryostat has been developed to provide continuous cooling to a photon detector below 2 K. A two-stage 4 K pulse tube cryocooler is used to liquefy evacuated vapor from a 1 K pumping port to form a closed-cycle refrigeration loop. A 1 K instrumentation chamber, attached to the 1 K cooling station, is designed to operate with helium inside and provide more uniform cooling. The design of the cryostat has no direct mechanical contact between the pulse tube cryocooler heat exchangers and the 1 K cooling station resulting in almost no vibration transfer to instrumentation chamber. The cryostat can reach a no-load temperature of 1.62 K and provide 250 mW cooling power at 1.84 K. 相似文献
12.
This paper describes the performance analysis of Stirling-type pulse tube refrigerator (PTR) in conjunction with the dynamics of the accompanied linear compressor. The dynamic behavior of the piston in the linear compressor is directly influenced by the load condition of the PTR. In this paper, the dynamic equation of the piston is simultaneously solved with the thermo-hydraulic governing equations of the PTR using linear analysis model and the performance of the PTR is predicted with the accompanied thermal losses. The developed analysis code is verified with the experimental results. The effect of the inertance tube length which plays an important role in the PTR is also specifically investigated from the experimental and simulation results. It clearly shows the effect of the flow impedance of the inertance tube on the dynamic response of the piston as well as the cooling performance of the PTR. 相似文献
13.
14.
《低温学》2016
This paper presents experimental results on a novel two-stage gas-coupled VM-PT cryocooler, which is a one-stage VM cooler coupled a pulse tube cooler. In order to reach temperatures below the critical point of helium-4, a one-stage coaxial pulse tube cryocooler was gas-coupled on the cold end of the former VM cryocooler. The low temperature inertance tube and room temperature gas reservoir were used as phase shifters. The influence of room temperature double-inlet was first investigated, and the results showed that it added excessive heat loss. Then the inertance tube, regenerator and the length of the pulse tube were researched experimentally. Especially, the DC flow, whose function is similar to the double-orifice, was experimentally studied, and shown to contribute about 0.2 K for the no-load temperature. The minimum no-load temperature of 4.4 K was obtained with a pressure ratio near 1.5, working frequency of 2.2 Hz, and average pressure of 1.73 MPa. 相似文献
15.
《低温学》2014
The method of wave-shaping acoustic resonators is applied to an inertance type cryogenic pulse tube refrigerator (IPTR) to improve its performance. A detailed time-dependent axisymmetric experimentally validated computational fluid dynamic (CFD) model of the PTR is used to predict its performance. The continuity, momentum and energy equations are solved for both the refrigerant gas (helium) and the porous media regions (the regenerator and the three heat-exchangers) in the PTR. An improved representation of heat transfer in the porous media is achieved by employing a thermal non-equilibrium model to couple the gas and solid (porous media) energy equations. The wave-shaped regenerator and pulse tube studied have cone geometries and the effects of different cone angles and the orientation (nozzle v/s diffuser mode) on the system performance are investigated. The resultant spatio-temporal pressure, temperature and velocity fields in the regenerator and pulse tube components are evaluated. The performance of these wave-shaped PTRs is compared to the performance of a non wave-shaped system with cylindrical components. Better cooling is predicted for the cryocooler using wave-shaped components oriented in the diffuser mode. 相似文献
16.
《低温学》2018
High-frequency pulse tube cryocooler (HPTC) has advantages of compact structure, low vibration, high reliability and long operation time. In this study, Theoretical analysis and experimental tests have been conducted in four aspects based on a developed 4 K HPTC. Firstly, a compressor with larger power output capability was employed and the impedance match between the cold head and the compressor was discussed. Secondly, simply using inertance tube configuration to replace the traditional inertance tube-gas reservoir structure. Then, the type and the size of the regenerator materials working at 4–20 K have been experimentally optimized. Finally, the performance of double-inlet working at as low as 20 K has also been tested for the first time for the HPTC. The present prototype achieved a no-load temperature of 3.6 K, which is the lowest temperature record ever reported for HPTC using helium-4 as working gas. A cooling power of 6 mW/4.2 K was also obtained with 250 W input power and a precooling power of 12.1 W/77 K. 相似文献
17.
《低温学》2015
A 300 Hz pulse tube cryocooler (PTC) driven by a three-stage traveling-wave thermoacoustic heat engine (TSTHE) has been proposed and studied in this paper. In the configuration, three identical thermoacoustic heat engine units are evenly incorporated in a closed traveling-wave loop, in which three pulse tube cryocoolers are connected to the branch of each thermoacoustic heat engine. Compared with the conventional thermoacoustic heat engine which involves a traveling-wave loop and a long resonator, it has advantages of compact size and potentially high thermal efficiency. A TSTHE–PTC system was designed, optimized and studied in detail based on the thermoacoustic theory. Firstly, numerical simulation was conducted to design the system thus the optimum structure parameters of the system were obtained. With the operating condition of 4 MPa mean pressure and high working frequency, a cooling power of 7.75 W at 77 K and an overall relative Carnot efficiency of 11.78% were achieved. In order to better understand the energy conversion characteristics of the system, distributions of key parameters such as acoustic work, phase difference, dynamic pressure, volume flow rate and exergy loss were presented and discussed. Then, the coupling mechanism of the system was investigated. In addition, influence of coupling position on the system performance was further studied. 相似文献
18.
《低温学》2018
The inertance tube plays a significant role in improving the performance of the Stirling type pulse tube cryocooler by providing the desired phase angle between the mass flow and pressure wave. The phase angle is highly depended on the inertance tube geometry, such as diameter and length. A cylindrical threaded root device with variable thread depth on the outer screw and inner screw creates an adjustable inertance tube whose diameter and length can be adjusted in the real time. However, due to its geometry imperfectness, the performance of this threaded inertance tube is reduced by the leaks through the roots between the two screws. Its phase angle shift ability is decreased by 30% with the leakage clearance thickness of 15.5 μm according to both the theoretical prediction and the experimental verification. 相似文献
19.
《低温学》2017
This paper presents experimental results and numerical evaluation of a Vuilleumier (VM) type pulse tube cryocooler. The cryocooler consists of three main subsystems: a thermal compressor, a low temperature pulse tube cryocooler, and a Stirling type precooler. The thermal compressor, similar to that in a Vuilleumier cryocooler, is used to drive the low temperature stage pulse tube cryocooler. The Stirling type precooler is used to establish a temperature difference for the thermal compressor to generate pressure wave. A lowest no-load temperature of 15.1 K is obtained with a pressure ratio of 1.18, a working frequency of 3 Hz and an average pressure of 2.45 MPa. Numerical simulations have been performed to help the understanding of the system performance. With given experimental conditions, the simulation predicts a lowest temperature in reasonable agreement with the experimental result. Analyses show that there is a large discrepancy in the pre-cooling power between experiments and calculation, which requires further investigation. 相似文献
20.
《低温学》2018
In recent years, improved efficiency of pulse tube cryocoolers has been required by some space infrared detectors and special military applications. Based on this, a high efficiency single-stage coaxial pulse tube cryocooler which operates at 60 K is introduced in this paper. The cryocooler is numerically designed using SAGE, and details of the analysis are presented. The performance of the cryocooler at different input powers ranging from 100 W to 200 W is experimentally tested. Experimental results show that this cryocooler typically provides a cooling power of 7.7 W at 60 K with an input power of 200 W, and achieves a relative Carnot efficiency of around 15%. When the cooling power is around 6 W, the cryocooler achieves the best relative Carnot efficiency of around 15.9% at 60 K, which is the highest efficiency ever reported for a coaxial pulse tube cryocooler. 相似文献