首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微重力环境低温流体无排气加注过程数值研究   总被引:1,自引:0,他引:1  
针对加注系统受注贮箱,采用CFD方法就液氮贮箱无排气加注过程开展数值仿真,对比了不同重力水平下的无排气加注性能,分析了加注口结构、壁面初始温度、加注流体温度和加注流量等因素对微重力无排气加注性能的影响规律。所构建的二维轴对称模型将流体区与固壁区一起作为求解区域并划分网格,并通过植入用户自定义程序(UDF)计算加注口液体闪蒸过程及气液之间的热质交换。经过实验数据验证,该模型能够合理展示箱内温度场分布和相分布情况,并获得贮箱压力等参数变化信息。数值计算结果表明:(1)加注条件相同时,微重力工况较常重力工况体现出更好的无排气加注性能。(2)微重力条件下,无排气加注性能几乎不受加注口结构的影响,壁面初始温度和加注流体温度越高,贮箱压力越高,加注流量仅对加注时间有显著影响。  相似文献   

2.
This paper investigates the transfer of liquid cryogens using a no-vent fill (NVF) process experimentally to identify the dominant NVF parameters. The experimental apparatus has been fabricated with extensive instrumentations to precisely study the effects of each NVF parameter. Liquid tetrafluoromethane (CF4) is selected as the working fluid due to its similar molecular structures and similar normal boiling point and triple point with liquid methane which has been considered as an attractive future cryogenic propellant. The experimental results show that the initial receiver tank wall temperature and the incoming liquid temperature are the primary factors that characterize the (non-equilibrium) thermodynamic state at the start of a NVF transfer. The supply pressure is also critical as it indicates the ability to condense vapor in the receiver tank. A non-dimensional map based on energy balance is proposed to find acceptable initial conditions of the filling volume at the desired final tank pressure. The non-dimensional map shows good agreement with the NVF data not only in this paper but also in the previous research.  相似文献   

3.
The flow boiling heat transfer characteristics of subcooled air-dissolved FC-72 on a smooth surface (chip S) were studied in microgravity by utilizing the drop tower facility in Beijing. The heater, with dimensions of 40 × 10 × 0.5 mm3 (length × width × thickness), was combined with two silicon chips with the dimensions of 20 × 10 × 0.5 mm3. High-speed visualization was used to supplement observation in the heat transfer and vapor-liquid two-phase flow characteristics. In the low and moderate heat fluxes region, the flow boiling of chip S at inlet velocity V =?0.5 m/s shows almost the same regulations as that in pool boiling. All the wall temperatures at different positions along the heater in microgravity are slightly lower than that in normal gravity, which indicates slight heat transfer enhancement. However, in the high heat flux region, the pool boiling of chip S shows much evident deterioration of heat transfer compared with that of flow boiling in microgravity. Moreover, the bubbles of flow boiling in microgravity become larger than that in normal gravity due to the lack of buoyancy Although the difference of the void fraction in x-y plain becomes larger with increasing heat flux under different gravity levels, it shows nearly no effect on heat transfer performance except for critical heat flux (CHF). Once the void fraction in y-z plain at the end of the heater equals 1, the vapor blanket will be formed quickly and transmit from downstream to upstream along the heater, and CHF occurs. Thus, the height of channel is an important parameter to determine CHF in microgravity at a fixed velocity. The flow boiling of chip S at inlet velocity V =?0.5 m/s shows higher CHF than that of pool boiling because of the inertia force, and the CHF under microgravity is about 78–92% of that in normal gravity.  相似文献   

4.
Experiments of highly subcooled nucleate pool boiling of FC-72 with dissolved air were studied both in short-term microgravity condition utilizing the drop tower Beijing and in normal gravity conditions. The bubble behavior and heat transfer of air-dissolved FC-72 on a small scale silicon chip (10 × 10 × 0.5 mm3) were obtained at the bulk liquid subcooling of 41 K and nominal pressure of 102 kPa. The boiling heat transfer performance in low heat flux region in microgravity is similar to that in normal gravity condition, while vapor bubbles increase in size but little coalescence occurs among bubbles, and then forms a large bubble remains attached to the heater surface during the whole microgravity period. Thermocapillary convection may be an important mechanism of boiling heat transfer in this case. With further increasing in heat flux to the fully developed nucleate boiling region, the vapor bubbles number as well as their size significantly increase in microgravity. Rapid coalescence occurs among adjacent bubbles and then the coalesced large bubble can depart from the heating surface during the microgravity period. The reason of the large bubble departure is mainly attributed to the momentum effects caused by the coalescence of small bubbles with the large one. Hence, the steady-state pool boiling can still be obtained in microgravity. In the high heat flux regime near the critical heat flux, significant deterioration of heat transfer was observed, and a large coalesced bubble forms quickly and almost covers the whole heater surface, leading to the occurrence of the critical heat flux in microgravity condition.  相似文献   

5.
Son H. Ho  Muhammad M. Rahman   《低温学》2008,48(1-2):31-41
This paper presents a study on fluid flow and heat transfer of liquid hydrogen in a zero boil-off cryogenic storage tank in a microgravity environment. The storage tank is equipped with an active cooling system consisting of a heat pipe and a pump–nozzle unit. The pump collects cryogen at its inlet and discharges it through its nozzle onto the evaporator section of the heat pipe in order to prevent the cryogen from boiling off due to the heat leaking through the tank wall from the surroundings. A three-dimensional (3-D) finite element model is employed in a set of numerical simulations to solve for velocity and temperature fields of liquid hydrogen in steady state. Complex structures of 3-D velocity and temperature distributions determined from the model are presented. Simulations with an axisymmetric model were also performed for comparison. Parametric study results from both models predict that as the speed of the cryogenic fluid discharged from the nozzle increases, the mean or bulk cryogenic fluid speed increases linearly and the maximum temperature within the cryogenic fluid decreases.  相似文献   

6.
For many industrial, medical and space technologies, cryogenic fluids play indispensable roles. An integral part of the cryogenic transport processes is the chilldown of the system components during initial applications. In this paper, we report experimental results for a chilldown process that is involved with the unsteady two-phase vapor-liquid flow and boiling heat transfer of the cryogen coupled with the transient heat conduction inside pipe walls. We have provided fundamental understanding on the physics of the two-phase flow and boiling heat transfer during cryogenic quenching through experimental observation, measurement and analysis. Based on the temperature measurement of the tube wall, the terrestrial cryogenic chilldown process is divided into three stages of film boiling, nucleate boiling and single-phase convection that bears a close similarity to the conventional pool boiling process. In earth gravity, cooling rate is non-uniform circumferentially due to a stratified flow pattern that gives rise to more cooling on the bottom wall by liquid filaments. In microgravity, there is no stratified flow and the absence of the gravitational force sends liquid filaments to the central core and replaces them by low thermal conductivity vapor that significantly reduces the heat transfer from the wall. Thus, the chilldown process is axisymmetric, but longer in microgravity.   相似文献   

7.
Temperature measurements during flow boiling of R134a in a 0.96 mm single circular channel are reported in order to provide a criterion for the determination of the critical conditions in the channel. The flow boiling heat transfer is obtained by using a secondary fluid; the wall temperature displays larger fluctuations in the zone where dryout occurs. These temperature fluctuations in the wall denote the presence of a liquid film drying up at the wall with some kind of an oscillating process. These temperature fluctuations never appear during condensation tests, neither are present during flow boiling at low vapour qualities. The fluctuations also disappear in the post-critical condition zone. Experimental values of dryout quality measured with the above method are reported in this paper at mass velocity ranging between 300 and 600 kg m?2s?1. In the practical applications of flow boiling, the dryout quality is a key parameter in the two-phase systems for cooling of devices, both for ground and microgravity applications. The test conditions reported here refer to relatively high mass velocities, and are obtained at earth gravity. Nevertheless, since the critical heat flux differences between the two gravity environments decrease with increasing velocity, the present data may also be used for inertia dominated systems at low g.  相似文献   

8.
This study deals with heat transfer enhancement surface manufactured by thermal spraying. Two thermal spraying methods using copper as a coating material, wire flame spraying (WFS) and vacuum plasma spraying (VPS), were applied to the outside of copper cylinder with 20 mm OD. The surface structure by WFS was denser than that by VPS. The effect of gravity on boiling heat transfer coeffcient and wall superheat at the onset of boiling were experimentally evaluated under micro- and hyper-gravity condition during a parabolic trajectory flight of an airplane. Pool boiling experiments in saturated liquid of HCFC123 were carried out for heat fluxes between 1.0 and 160 kW/m2 and saturated temperature of 30 °C. As a result, the surface by VPS produced higher heat transfer coefficient and lower superheat at the onset of boiling under microgravity. For the smooth surface, the effect of gravity on boiling heat transfer coefficient was a little. For the coating, a large difference in heat transfer coefficient to gravity was observed in the moderate heat flux range. The heat transfer coefficinet decreased as gravity changed from the normal to hypergravity, and was improved as gravity changed from the hyperto microgravity. The difference in heat transfer coefficient between the normal and microgravity was a little. Heat transfer enhancement factor was kept over the experimental range of heat flux. It can be said that boiling behavior on thermal spray coating might be influenced by flow convection velocity.  相似文献   

9.
为实现液氢在空间中安全高效应用,针对微重力条件下液氢膜态沸腾现象,建立了加热细丝浸没在过冷液氢池中的数值计算模型.采用VOF方法捕捉相界面,相变模型选取Lee模型,利用文献中的实验数据验证了模型的准确性.从气泡运动行为和换热特性两方面开展研究,结果发现液体过冷度和重力水平是影响换热机理的两个重要因素.在高重力水平、低液...  相似文献   

10.
《低温学》2006,46(2-3):118-125
Experimental results are presented for pressure–volume–temperature (PVT) liquid quantity gauging of a 0.17 m3 liquid nitrogen tank pressured with ambient temperature helium in the normal gravity environment. A previously reported PVT measurement procedure has been improved to include helium solubility in liquid nitrogen. Gauging data was collected at nominal tank fill levels of 80%, 50% and 20% and at nominal tank pressures of 0.3, 1.0, and 1.7 MPa. The test tank was equipped with a liquid pump and spray manifold to circulate and mix the fluid contents and therefore create near-isothermal conditions throughout the tank. Silicon diode sensors were distributed throughout the tank to monitor temperatures. Close-spaced arrays of silicon diode point sensors were utilized to precisely detect the liquid level at the nominal 80%, 50%, and 20% fill levels. The tests simulated the cryogenic tank-side conditions only; helium mass added to the tank was measured by gas flowmeters rather than using pressure and temperature measurements from a dedicated helium supply bottle. Equilibrium data for cryogenic nitrogen and helium mixtures from numerous sources was correlated to predict soluble helium mole fractions. Results show that solubility should be accounted for in the PVT gauging calculations. Mole fractions predicted by Dalton’s Law were found to be in good agreement with the compiled equilibrium data within the temperature–pressure range of interest. Therefore, Dalton’s Law was deemed suitable for calculating ullage composition. Gauging results from the PVT method agreed with the reference liquid level measurements to within 3%.  相似文献   

11.
A temperature-controlled pool boiling (TCPB) device has been developed to study the bubble behaviors and heat transfer in pool boiling phenomenon both in normal gravity and in microgravity. The results on heat transfer and bubble dynamic behavior in the experiments aboard the 22nd Chinese recoverable satellite and those in normal gravity before and after the flight experiment are reported and discussed in the present paper. The onset-boiling temperature is independent, or at least, dependent much weakly on gravity. Heat transfer of nucleate boiling in microgravity is slightly enhanced, while the scale of CHF with gravity is contrary to the traditional viewpoint and can be predicted by LD-Zuber correlation. A forward-and-backward lateral motion of vapor bubbles is observed along the wire before their departure from the wire in microgravity, while three critical bubble diameters divide the observed vapor bubbles into four regions in microgravity. These distinctive bubble behavior can be interpreted by Marangoni effects.  相似文献   

12.
Two-phase flows of gas and liquid are increasingly paid much attention to space application due to excellent properties of heat and mass transfer, so it is very meaningful to develop studies on them in microgravity. In this paper, gas-phase distribution and turbulence characteristics of bubbly flow in normal gravity and microgravity were investigated in detail by using Euler–Lagrange two-way model. The liquid-phase velocity field was solved by using direct numerical simulations (DNS) in Euler frame of reference, and the bubble motion was tracked by using Newtonian motion equations that took into account interphase interaction forces including drag force, shear lift force, wall lift force, virtual mass force and inertia force, etc. in Lagrange frame of reference. The coupling between gas–liquid phases was made with regarding interphase forces as a momentum source term in the momentum equation of the liquid phase. Under the normal gravity condition, a great number of bubbles accumulate near the walls under the influence of the shear lift force, and addition of bubbles reduces turbulence of the liquid phase. Different from the normal gravity condition, in microgravity, an overwhelming majority of bubbles migrate towards the centre of the channel driven by the pressure gradient force, and bubbles have little effect on the turbulence of the liquid phase.  相似文献   

13.
Pool boiling of degassed FC-72 on a plane plate heater has been studied experimentally in microgravity. A quasi-steady heating method is adopted, in which the heating voltage is controlled to increase exponentially with time. Compared with terrestrial experiments, bubble behaviors are very different, and have direct effect on heat transfer. Small, primary bubbles attached on the surface seem to be able to suppress the activation of the cavities in the neighborhoods, resulting in a slow increase of the wall temperature with the heat flux. For the high subcooling, the coalesced bubble has a smooth surface and a small size. It is difficult to cover the whole heater surface, resulting in a special region of gradual transitional boiling in which nucleate boiling and local dry area can co-exist. No turning point corresponding to the transition from nucleate boiling to film boiling can be observed. On the contrary, the surface oscillation of the coalesced bubble at low subcooling may cause more activated nucleate sites, and then the surface temperature may keep constant or even fall down with the increasing heat flux. Furthermore, an abrupt transition to film boiling can also be observed. It is shown that heat transfer coefficient and CHF increase with the subcooling or pressure in microgravity, as observed in normal gravity. But the value of CHF is quite lower in microgravity, which may be only about one third of that at the similar pressure and subcooling in terrestrial condition.  相似文献   

14.
火箭燃料贮箱热力学排气系统控压性能仿真研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文介绍了低温推进剂在轨管理中热力学排气系统(thermodynamic venting system,TVS)的构成及工作原理。基于VOF模型,编写用户自定义程序考虑箱内存在的热质传递现象,采用CFD模拟贮箱内部的压力变化和温度场分布。构建的CFD模型能够较好地模拟TVS的工作特性,证明CFD研究的有效性。针对不同液体初始充灌率、节流条件等影响因素进行变工况模拟,揭示TVS的工作规律。计算TVS在微重力下的控压性能,验证其在微重力下的可行性并获得运行规律。  相似文献   

15.
In this paper, a steady RNG k-ε model, in conjunction with enhanced wall treatment method, was applied to the gas core in order to simulate the flow physics of annular two-phase flow. The model incorporated a physical model of wave characteristics and included the liquid entrainment influence on the flow. Based on the simulation results, flow features in the gas core were quantitatively presented and a model of the liquid entrainment mechanism was proposed. In addition, a parametric study was conducted to determine the impact of changing wave velocity, pressure, and gravitational force on the liquid film flow. The results were validated using a large set of experimental data at normal and microgravity conditions. Also, the law of the wall was applied to previously-collected experimental data. Analysis yielded different flow features of the liquid film at microgravity and normal gravity conditions.  相似文献   

16.
The aim of the present paper is to describe the results of flow boiling heat transfer at low gravity and compare them with those obtained at earth gravity, evaluating possible differences. The experimental campaigns at low gravity have been performed with parabolic flights. The paper will show the analysis of differences between the heat transfer coefficients at normal and at zero gravity, and the study of the effects of mass flux, heat flux, and tube diameter on boiling phenomena at microgravity. Three tube diameters are tested: 6.0, 4.0, and 2.0?mm. With respect to terrestrial gravity, both heat transfer rate enhancement (up to 15?C20%) and deterioration (up to 35%) have been observed. Heat transfer differences for the two gravity conditions may be related to the different bubble size in each of them. The size of a bubble in flow boiling is generally affected by the gravity level, being larger at low gravity, unless inertial forces are largely predominant over buoyancy and other forces acting on the bubble itself when detaching from a heating wall. Heat transfer enhancements at low gravity, are observed in those conditions where the flow pattern is bubbly flow at normal gravity and intermittent flow at low gravity. The results are presented in a flow boiling gravity influence map, which can be considered a useful tool for designing boiling systems for space applications.  相似文献   

17.
This paper presents a numerical model of a system-level test bed—the multipurpose hydrogen test bed (MHTB) using the Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a space transportation vehicle liquid hydrogen propellant tank, and ground-based testing was performed at NASA Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume-based network flow analysis software developed at MSFC and used for thermofluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by the Thermodynamic Vent System (TVS). A TVS typically includes a Joule–Thompson (J–T) expansion device, a two-phase heat exchanger (HEX), and a mixing pump and liquid injector to extract thermal energy from the tank without significant loss of liquid propellant. For the MHTB tank, the HEX and liquid injector are combined into a vertical spray bar assembly. Two GFSSP models (Self-Pressurization and TVS) were separately developed and tested and then integrated to simulate the entire system. The Self-Pressurization model consists of multiple ullage nodes, a propellant node, and solid nodes; it computes the heat transfer through multilayer insulation blankets and calculates heat and mass transfer between the ullage and liquid propellant and the ullage and tank wall. A TVS model calculates the flow through a J–T valve, HEX, and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. Results of the integrated models have been compared with MHTB test data at a 50% fill level. Satisfactory comparison was observed between tests and numerical predictions.  相似文献   

18.
A visual observation of liquid–gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.  相似文献   

19.
Inflow boiling, gravity effects on the distribution of both phases are observed in a heated tube and heat transfer coefficients due to two-phase forced convection is deteriorated in microgravity. In narrow channels between heated and unheated plates, the increase in subcooling enlarges a size of flattened bubble and reduces the frequency of detachment under microgravity conditions resulting the emphasis of heat transfer deterioration. To clarify reasons for the unknown behaviors of interfacial distribution and corresponding characteristics in heat transfer not easily be clarified through the experiments on ground, the opportunity on the experiments utilizing long-term microgravity duration realized in ISS is required. The experiments on microgravity boiling and two-phase flow are proposed by the collaboration of researchers in five countries. A common test loop is designed to conduct multiple experiments by the interchangeable structures of test sections; a transparent heated tube for the visualized flow boiling, a stainless tube for the measurement of CHF data, a copper surface for the heat transfer data of nucleate boiling with superimposed liquid flows in a duct, a glass heated plate with multiple array of small temperature sensors and transparent heaters for the clarification of mechanisms in nucleate boiling heat transfer, and one or two models of cold plates for practical applications. A direction of researches in the present discipline is proposed based on the existing experimental results and on the idea developed by the present authors.  相似文献   

20.
The formation of a dynamic spiral string of particles with larger density than the fluid was investigated for time-dependent thermocapillary flow in liquid bridges under various gravity conditions including microgravity. The dynamic spiral string forms after approximately 20–60 oscillation periods from the homogeneous dilute particle suspension. It was found that the action of gravity is not decisive in the process of the particle accumulation structure (PAS) but gravity influences the flow field for PAS-formation. We could realize and observe PAS with modal structure m=3 under μ-g but modal structure m=2 occurred only during a transient of the operating parameters in an aspect ratio-range different from that under normal gravity. The correlation of the optically observed PAS structure with the temperature structure of the azimuthally rotating hydrothermal wave on the free surface is the same under microgravity as under normal gravity indicating that PAS is a pure Marangoni effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号