首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article focuses on robust adaptive sliding mode control law for uncertain discrete systems with unknown time-varying delay input, where the uncertainty is assumed unknown. The main results of this paper are divided into three phases. In the first phase, we propose a new sliding surface is derived within the Linear Matrix Inequalities (LMIs). In the second phase, using the new sliding surface, the novel Robust Sliding Mode Control (RSMC) is proposed where the upper bound of uncertainty is supposed known. Finally, the novel approach of Robust Adaptive Sliding ModeControl (RASMC) has been defined for this type of systems, where the upper limit of uncertainty which is assumed unknown. In this new approach, we have estimate the upper limit of uncertainties and we have determined the control law based on a sliding surface that will converge to zero. This novel control laws are been validated in simulation on an uncertain numerical system with good results and comparative study. This efficiency is emphasized through the application of the new controls on the two physical systems which are the process trainer PT326 and hydraulic system two tanks.  相似文献   

2.
This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller.  相似文献   

3.
Ho HF  Wong YK  Rad AB 《ISA transactions》2008,47(3):286-299
Adaptive fuzzy control is proposed for a class of affine nonlinear systems in strict-feedback form with unknown nonlinearities. The unknown nonlinearities include two types of nonlinear functions: one satisfies the "triangularity condition" and can be directly approximated by fuzzy logic system, while the other is assumed to be partially known and consists of parametric uncertainties. Takagi-Sugeno type fuzzy approximators are used to approximate unknown system nonlinearities and the design procedure is a combination of adaptive backstepping and generalized small gain design techniques. It is proved that the proposed adaptive control scheme can guarantee the uniformly ultimately bounded (UBB) stability of the closed-loop systems. Simulation studies are shown to illustrate the effectiveness of the proposed approach.  相似文献   

4.
This paper presents a new discrete-time adaptive second-order sliding mode control with time delay estimation (TDE) for a class of uncertain nonlinear time-varying strict-feedback systems. The existing researches on time delay control (TDC) are conventionally established based on a stability criterion that is subject to the infinitesimal time delay assumption. Recently, this criterion was rejected and a new criterion was proposed for the development of a controller for systems with fully known dynamics. In this study, this approach is extended to uncertain systems. Specifically, a new criterion is developed for the stability of the TDE-error within an adaptive robust controller design without the infinitesimal time delay assumption. With the proposed adaptive robust control, there is no need for determination of uncertainties upper-bounds. Simulation results illustrate the efficacy of the proposed controller.  相似文献   

5.
An adaptive feedback linearization technique combined with the neural network is addressed to control uncertain nonlinear systems. The neural network-based adaptive control theory has been widely studied. However, the stability analysis of the closed-loop system with the neural network is rather complicated and difficult to understand, and sometimes unnecessary assumptions are involved. As a result, unnecessary assumptions for stability analysis are avoided by using the neural network with input normalization technique. The ultimate boundedness of the tracking error is simply proved by the Lyapunov stability theory. A new simple update law as an adaptive nonlinear control is derived by the simplification of the input normalized neural network assuming the variation of the uncertain term is sufficiently small.  相似文献   

6.
In this paper a new indirect type-2 fuzzy neural network predictive (T2FNNP) controller has been proposed for a class of nonlinear systems with input-delay in presence of unknown disturbance and uncertainties. In this method, the predictor has been utilized to estimate the future state variables of the controlled system to compensate for the time-varying delay. The T2FNN is used to estimate some unknown nonlinear functions to construct the controller. By introducing a new adaptive compensator for the predictor and controller, the effects of the external disturbance, estimation errors of the unknown nonlinear functions, and future sate estimation errors have been eliminated. In the proposed method, using an appropriate Lyapunov function, the stability analysis as well as the adaptation laws is carried out for the T2FNN parameters in a way that all the signals in the closed-loop system remain bounded and the tracking error converges to zero asymptotically. Moreover, compared to the related existence predictive controllers, as the number of T2FNN estimators are reduced, the computation time in the online applications decreases. In the proposed method, T2FNN is used due to its ability to effectively model uncertainties, which may exist in the rules and data measured by the sensors. The proposed T2FNNP controller is applied to a nonlinear inverted pendulum and single link robot manipulator systems with input time-varying delay and compared with a type-1 fuzzy sliding predictive (T1FSP) controller. Simulation results indicate the efficiency of the proposed T2FNNP controller.  相似文献   

7.
Adaptive fuzzy sliding-mode controller of uncertain nonlinear systems   总被引:1,自引:0,他引:1  
Wu TZ  Juang YT 《ISA transactions》2008,47(3):279-285
This paper deals with the design of adaptive fuzzy sliding-mode controllers for the T-S fuzzy model based on the Lyapunov function. It is shown that the Lyapunov function can be used to establish fuzzy sliding surfaces by solving a set of linear matrix inequalities (LMIs). The design of the fuzzy sliding surfaces and the adaptive fuzzy sliding-mode controllers is proposed. The adaptive mechanism is also used to deal with unknown parameter perturbations and external disturbances. Two examples illustrate the feasibility of the proposed methods.  相似文献   

8.
Optimal second order sliding mode control for nonlinear uncertain systems   总被引:1,自引:0,他引:1  
In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty.  相似文献   

9.
This paper describes an automatic welding control system developed for alternating current shielded metal arc welding (SMAW). This method could replace manual operations which require a well-trained technician. We have derived a mathematical model of the welding control system and identified the system’s parameters. The sliding surface is used as the input variable to reduce the number of fuzzy reasoning rules, in comparison with the conventional two-dimensional fuzzy logic control (FLC) algorithm. An adaptive fuzzy sliding mode controller (AFSMC) consists of an equivalent control part and a hitting control part. An adaptive law derived from a Lyapunov function is used to obtain the FLC’s parameters, and is applied to approximate the equivalent control part of the sliding mode control (SMC), so that the system states can be forced to zero. By using three-rules FLC, the control part that satisfies the hitting conditions of the SMC can force the system’s states to reach and remain on the sliding surface. Therefore, the stability of the AFSMC can be guaranteed and can be used to modulate the rate of the electrode feeding mechanism that regulates the arc current of the SMAW. The simulation and the experimental results both show that this automatic welding control system, based on the AFSMC, can perform effectively.  相似文献   

10.
This paper describes an automatic welding control system developed for alternating current shielded metal arc welding (SMAW). This method could replace manual operations which require a well-trained technician. We have derived a mathematical model of the welding control system and identified the system’s parameters. The sliding surface is used as the input variable to reduce the number of fuzzy reasoning rules, in comparison with the conventional two-dimensional fuzzy logic control (FLC) algorithm. An adaptive fuzzy sliding mode controller (AFSMC) consists of an equivalent control part and a hitting control part. An adaptive law derived from a Lyapunov function is used to obtain the FLC’s parameters, and is applied to approximate the equivalent control part of the sliding mode control (SMC), so that the system states can be forced to zero. By using three-rules FLC, the control part that satisfies the hitting conditions of the SMC can force the system’s states to reach and remain on the sliding surface. Therefore, the stability of the AFSMC can be guaranteed and can be used to modulate the rate of the electrode feeding mechanism that regulates the arc current of the SMAW. The simulation and the experimental results both show that this automatic welding control system, based on the AFSMC, can perform effectively.  相似文献   

11.
针对含完全未知时滞的不确定非线性系统的控制问题,提出了一种自适应模糊动态面控制方案.首先采用模糊逻辑系统逼近系统的未知时滞函数,进而用参考信号代换逼近器输入中的未知时滞信号,取消了对未知时滞常作的假设,摆脱了控制器构造对时滞假设条件的依赖性.模糊逼近和时滞代换产生的误差则采用自适应边界技术处理.基于Lyapunov-Krasovskii泛函,证明了闭环系统所有信号半全局一致最终有界,通过调节设计参数可以实现任意的跟踪精度.仿真实例进一步说明了该方案的可行性.  相似文献   

12.
Asymptotic stabilization of a class of nonlinear systems with known constant long input delay is addressed in the presence of external disturbance by applying sliding mode control method. Modified prediction variable scheme is employed to compensate long delays in the input, where conventional prediction variable approaches cannot be employed. This is mainly due to the fact that the external disturbance appears in the prediction variable, which renders the controller dependent on the external disturbance. In order to tackle this problem, the nonlinear disturbance observer based predictor is used. A suitable disturbance observer is designed to estimate the external disturbance that appears in the prediction variable. Respected to some existing results, the prediction-based control for more general class of the nonlinear systems in the presence of external disturbance is the main contribution of this paper. Actuator and sensor delays exist in the most common dynamic systems. So, the proposed control scheme can be employed in many conventional systems. The simulation results indicate the robustness and efficiency of the proposed controller.  相似文献   

13.
This paper proposes a disturbance-observer-based fuzzy model predictive control (DOBFMPC) scheme for the nonlinear process subject to disturbances and input constraints. The proposed control scheme is composed of the baseline fuzzy model predictive control (FMPC) law designed on the Takagi–Sugeno fuzzy model and the disturbance compensation law. To build a fuzzy model of appropriate complexity and accuracy for the nonlinear process model, a systematic approach is developed via the gap metric to determine the linearization points. With FMPC, the asymptotic stability is theoretically proved, and the input constraints are satisfied by both the free control variables and the future control inputs in the form of the state feedback law. The disturbance compensation gain is designed such that the influence of the disturbance is removed from the output channels by the composite DOBFMPC law at the steady state. The application to a subcritical boiler–turbine system demonstrate the effectiveness of the proposed control scheme.  相似文献   

14.
This paper proposes adaptive control designs for vehicle active suspension systems with unknown nonlinear dynamics (e.g., nonlinear spring and piece-wise linear damper dynamics). An adaptive control is first proposed to stabilize the vertical vehicle displacement and thus to improve the ride comfort and to guarantee other suspension requirements (e.g., road holding and suspension space limitation) concerning the vehicle safety and mechanical constraints. An augmented neural network is developed to online compensate for the unknown nonlinearities, and a novel adaptive law is developed to estimate both NN weights and uncertain model parameters (e.g., sprung mass), where the parameter estimation error is used as a leakage term superimposed on the classical adaptations. To further improve the control performance and simplify the parameter tuning, a prescribed performance function (PPF) characterizing the error convergence rate, maximum overshoot and steady-state error is used to propose another adaptive control. The stability for the closed-loop system is proved and particular performance requirements are analyzed. Simulations are included to illustrate the effectiveness of the proposed control schemes.  相似文献   

15.
This paper is concerned with the adaptive bipartite output consensus tracking problem of high-order nonlinear coopetition multi-agent systems with input saturation under a signed directed graph. A distributed fuzzy-based command filtered backstepping scheme is proposed, where the unknown nonlinear dynamics are approximated by the fuzzy logic system (FLS). The errors compensation mechanism is constructed to eliminate the errors caused by filters. Under the proposed control scheme, we only need to design one adaptive law for each agent, and it is proved that the bipartite output tracking errors converge into the desired neighborhood and all the closed-loop signals are bounded although the input saturation exists. Two numerical examples are included to verify the effectiveness of given scheme.  相似文献   

16.
This paper investigates an adaptive controller for a class of Multi Input Multi Output (MIMO) nonlinear systems with unknown parameters, bounded time delays and in the presence of unknown time varying actuator failures. The type of considered actuator failure is one in which some inputs may be stuck at some time varying values where the values, times and patterns of the failures are unknown. The proposed approach is constructed based on a backstepping design method. The boundedness of all the closed-loop signals is guaranteed and the tracking errors are proved to converge to a small neighborhood of the origin. The proposed approach is employed for a double inverted pendulums benchmark and a chemical reactor system. The simulation results show the effectiveness of the proposed method.  相似文献   

17.
This paper proposes a concept of robust preview tracking control for uncertain discrete-time systems with time-varying delay. Firstly, a model transformation is employed for an uncertain discrete system with time-varying delay. Then, the auxiliary variables related to the system state and input are introduced to derive an augmented error system that includes future information on the reference signal. This leads to the tracking problem being transformed into a regulator problem. Finally, for the augmented error system, a sufficient condition of asymptotic stability is derived and the preview controller design method is proposed based on the scaled small gain theorem and linear matrix inequality (LMI) technique. The method proposed in this paper not only solves the difficulty problem of applying the difference operator to the time-varying matrices but also simplifies the structure of the augmented error system. The numerical simulation example also illustrates the effectiveness of the results presented in the paper.  相似文献   

18.
In this paper, the altitude and velocity tracking control of a generic hypersonic flight vehicle (HFV) is considered. A novel adaptive terminal sliding mode controller (ATSMC) with strictly lower convex function based nonlinear disturbance observer (SDOB) is proposed for the longitudinal dynamics of HFV in presence of both parametric uncertainties and external disturbances. First, for the sake of enhancing the anti-interference capability, SDOB is presented to estimate and compensate the equivalent disturbances by introducing a strictly lower convex function. Next, the SDOB based ATSMC (SDOB-ATSMC) is proposed to guarantee the system outputs track the reference trajectory. Then, stability of the proposed control scheme is analyzed by the Lyapunov function method. Compared with other HFV control approaches, key novelties of SDOB-ATSMC are that a novel SDOB is proposed and drawn into the (virtual) control laws to compensate the disturbances and that several adaptive laws are used to deal with the differential explosion problem. Finally, it is illustrated by the simulation results that the new method exhibits an excellent robustness and a better disturbance rejection performance than the convention approach.  相似文献   

19.
This paper presents a continuous higher-order sliding mode (HOSM) control scheme with time-varying gain for a class of uncertain nonlinear systems. The proposed controller is derived from the concept of geometric homogeneity and super-twisting algorithm, and includes two parts, the first part of which achieves smooth finite time stabilization of pure integrator chains. The second part conquers the twice differentiable uncertainty and realizes system robustness by employing super-twisting algorithm. Particularly, time-varying switching control gain is constructed to reduce the switching control action magnitude to the minimum possible value while keeping the property of finite time convergence. Examples concerning the perturbed triple integrator chains and excitation control for single-machine infinite bus power system are simulated respectively to demonstrate the effectiveness and applicability of the proposed approach.  相似文献   

20.
This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号