首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeelimite-containing cements are attracting attention for their tailored properties. Calcium sulfoaluminate, CSA, cements have high contents of Yeelimite and they are used for special applications. Belite calcium sulfoaluminate, BCSA or sulfobelite, cements have high contents of belite and intermediate contents of Yeelimite, and they may become an alternative to OPC. Here, we report Rietveld quantitative phase analyses for three commercially available CSA clinkers, one CSA cement, and two laboratory-prepared iron-rich BCSA clinkers. The crystalline phases are reported and quantified. Selective dissolutions are employed for BCSA clinkers to firmly establish their phases. Finally, the overall unaccounted contents (amorphous plus crystalline not quantified) have been determined by two approaches: i) external standard procedure (G-method) with reflection data; ii) internal standard procedure (spiking method with ZnO) with transmission data. The overall unaccounted contents for CSA clinkers were ~ 10 wt.%. Conversely, the unaccounted contents for BCSA clinkers were higher, ~ 25 wt.%.  相似文献   

2.
《Ceramics International》2017,43(3):3267-3273
The microstructure and electromagnetic (EM) properties of near-stoichiometric SiC fibres (with C/Si ratio of 1.125) were analyzed and evaluated in detail. The SiC fibres consisted of β-SiC nanocrystallines and free carbon, and exhibited a uniquely specific skin-core structure with thin carbon layer of 5 nm on their surfaces. The relative complex permittivity increased with the increasing fibre volume fraction from 13 vol% to 27.5 vol%. The imaginary part of permittivity increased from 1.36 to 2.13 at 10 GHz, due to more SiC nanocrystallines and interfaces generating. The EM wave absorption properties were enhanced by the increasing fibre volume fraction and the effective absorption bandwidth was approximately 2.6 GHz when the fibre volume fraction was 27.5 vol%.  相似文献   

3.
SiC Nicalon fibre yarn was heat-treated at elevated temperature in a gas pressure furnace under CO atmosphere. Weak surface coating is essential for ceramic matrix composite (CMC) reinforcement. Therefore Nicalon SiC fibres were coated after CO heat treatment and then used for β-sialon ceramic reinforcement. The heat treated fibres were chopped about 1–2 mm, and β-sialon z = 1 starting powders were prepared with conventional ball milling. The sialon starting composition and the short fibres were mixed with the certain amount of water to obtain a plastically formable mud. This mud was unaxially cold-pressed to form green bodies and to decrease water content. The green bodies were hot pressed at elevated temperatures for half an hour to produce CMC samples. Vickers hardness test showed that heat-treated fibre reinforcement of β-sialon composites provided higher fracture toughness. Uniform fibre distribution, fibre coating, matrix densification and phase transformation were examined by SEM and XRD analysis.  相似文献   

4.
《Ceramics International》2017,43(10):7581-7587
As compared to a bulk material, the fibres exhibit novel physical and chemical properties arising from their unique geometric features such as high surface area, surface to volume ratio and small fibre diameter. This paper is focused on the fabrication of nanosized 8 mol% yttria doped zirconia fibres by electrospinning from propoxide/polyvinylpyrrolidonebased precursors and physical-chemical characterization of the ceramic fibres with an energy application potential. Fully crystalline composition of cubic zirconia was detected after fibre heat treatment at 700 °C. The fibre morphology was changed with increasing temperature from flexible nonsintered nanoparticle system at 700 °C through porous nanograin structure at 900 °C and nonporous structure with coarser nanograins at 1100 °C to fragile chain-like fibre structure formed of elongated submicrometer grains at 1300–1450 °C. The densification and grain growth kinetics were described in two stages in the temperature range from 700 °C up to 1450 °C.  相似文献   

5.
《Ceramics International》2014,40(2):3131-3138
In this work, BaCe0.8Y0.2O3−α (BCY) perovskite hollow fibre membranes were fabricated by a phase inversion and sintering method. BCY powder was prepared by the sol–gel technique using ethylenediaminetetraacetic acid (EDTA) and citric acid as the complexing agents. Gel calcination was carried out at high temperature to form the desired crystal structure. The qualified BCY hollow fibre membranes could not be achieved even the sintering was carried out at temperatures up to 1550oC due to the poor densification behavior of the BCY material. The addition of sintering aid (1 wt% Co2O3) inside BCY powder as the membrane starting material significantly improved the densification process, leading to the formation of gas-tight BCY hollow fibres. The optimum sintering temperature of BCY hollow fibre membrane was 1400 °C to achieve the best mechanical strength. H2 permeation through the BCY hollow fibre membranes was carried out between 700 and 1050 °C using 25% H2–He mixture as feed gas and N2 as sweep gas, respectively. For comparison purpose, the disk-shaped BCY membrane with a thickness of 1 mm was also prepared. The measured H2 permeation flux through the BCY hollow fibres reached up to 0.38 mL cm−2 min−1 at 1050 °C strikingly contrasting to the low values of less than 0.01 mL cm−2 min−1 from the disk-shaped membrane. After the permeation test, the microstructure of BCY hollow fibre membrane was still maintained well without signals of membrane disintegration or peeling off.  相似文献   

6.
《Ceramics International》2016,42(14):15397-15404
In order to improve the properties of silicon sol shell for investment casting process, a varying content of hybrid fibres (aluminium silicate and polypropylene) was introduced into slurry for preparation of fibre-reinforced shell in the present work. The bending strength, self-load deformation at elevated temperature, and the permeability of fibre-reinforced shell specimens were investigated and the fracture surfaces of shell specimens were observed by SEM. The results show that the bending strength of green shell increases with content of fibres in it. The maximum bending strength of 4.96 MPa was obtained in the fired shell with 0.6 wt% hybrid fibres addition. The high temperature self-loaded deformation of specimens of shell reinforced with a hybrid fibre addition above 0.6 wt% is higher than that of the unreinforced. However, the shell with a hybrid fibre addition up to 0.4 wt% exhibits the lower self-loaded deformation at high temperature compared to the unreinforced. It is also found that the permeability of shell specimens can be improved by hybrid fibres addition. Based on the fracture surfaces observation using a scanning electron microscope (SEM), the failure mode of the green shell reinforced with hybrid fibres is identified as fibre rupturing from the substrate of shell specimens, and/ or debonding from adhesive film surrounding it in shell. Even though the specimens of shell being fired at 900 °C for 2 h, the same failure features also exist in the fracture surfaces of specimens. This indicates that the specimens of shell can still be reinforced with aluminium silica fibres (residue of hybrid fibres) for their interpenetrating fibres network structure although go through firing.  相似文献   

7.
The aim of this work is to investigate the thermal conversion of carbon fibres/polysiloxane composites to carbon fibres/ceramic composites. The conversion mechanism of four different resins to the ceramic phase in the presence of carbon fibres is investigated. The experiments were conducted in three temperature ranges, corresponding to composite manufacturing stages, namely up to 160 °C, 1000 °C and finally 1700 °C.The study reveals that the thermal conversion mechanism of pure resins in the presence of carbon fibres is similar to that without fibres up to 1000 °C. Above 1000 °C thermal decomposition occurs in both solid (composite matrix) and gas phases, and the presence of carbon fibres in resin matrix produces higher mass losses and higher porosity of the resulting composite samples in comparison to ceramic residue obtained from pure resin samples. XRD analysis shows that at temperature of 1700 °C composite matrices contain nanosized silicon carbide. SEM and EDS analyses indicate that due to the secondary decomposition of gaseous compounds released during pyrolysis a silicon carbide protective layer is created on the fibre surface and fibre–matrix interface. Moreover, nanosized silicon carbide filaments crystallize in composite pores.Owing to the presence of the protective silicon carbide layer created from the gas phase on the fibre–matrix interface, highly porous C/SiC composites show significantly high oxidation resistance.  相似文献   

8.
This study reports the synthesis and mechanical properties of new inorganic polymer (geopolymer) composites unidirectionally reinforced with 4–10 vol.% natural cellulose-based fibres (NZ flax, phormium tenax). The geopolymer matrix was derived from dehydroxylated kaolinite-type clay. The mechanical properties of the fibre-reinforced composites improve with increasing fibre content, achieving ultimate flexural strengths of about 70 MPa at 10 vol.% fibre content. This represents a significant improvement on the flexural strength of the unreinforced geopolymer matrix (about 5.8 MPa), and all the composites show graceful failure, unlike the brittle failure of the matrix. Scanning electron microscopy was used to study the morphology of the fibre-matrix regions and a combination of thermogravimetric analysis (TGA) and thermal shrinkage measurements of these composites suggests that despite the formation of microcracks due to water loss from the geopolymer matrix, the fibres are thermally protected by the matrix up to 400 °C. The flax fibres do not appear to be compromised by the alkaline environment of the matrix, suggesting new possible applications for these low-cost simply prepared construction materials.  相似文献   

9.
《Ceramics International》2016,42(5):6015-6024
The thermomechanical analysis (TMA) and thermal characteristics of carbon-containing refractory castable matrix with 20.0 wt% graphite have been compared with graphite-free high alumina based similar castable matrix. Graphite has been added both in uncoated and coated forms, the latter having a thin sol–gel calcium aluminate coating on as-received graphite flakes. The influence of systematic variation of microfine constituents e.g. reactive alumina, high alumina cement etc in the matrix has been investigated in terms of the heat flow studies obtained by differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The densification behavior of graphite-free and graphite-containing castable matrices has been critically estimated by the dimensional changes in dynamic heating regime up to 1500 °C. The role of coated graphite on improved densification behavior of refractory was explored by microstructure and phase assemblage studies of the respective fired castable. It was further corroborated by the transmission electron microscope (TEM) studies of surface-modified graphites.  相似文献   

10.
The purpose of this study was to examine the influence of various polymeric materials on the adhesion characteristics of a rapid setting, minimum defect mortar based upon a blend of calcium sulfoaluminate (CSA) cement and ordinary Portland cement (OPC). Four different polymer powders were added to the base mortar at a polymer/cement ratio (p/c) of 0.15. The water/cement (w/c) ratio remained constant for all mortars at 0.42. The polymeric materials consisted of an acrylic polymer powder with Tg=−10 °C, a styrene butadiene rubber (SBR) polymer powder with Tg=15 °C and two vinyl acetate/ethylene (VAE) polymer powders, one with Tg=−7 °C and the other with Tg=20 °C. Mortars were tested for direct tensile strength following ASTM C307 and pull-off strength following a variant of ASTM C1583 after curing for either 24 h or 13 days at ambient laboratory temperature of 23 °C. Mortars were cast over concrete, wood, metal and glass substrates. Pull-off tests over concrete substrate resulted in substrate failure for all polymer modified mortars. Pull-off tests cast over wood, glass and metal substrate materials highlighted the SBR polymer for demonstrating the poorest adhesion performance. Statistical analysis was performed with Minitab software.  相似文献   

11.
In an effort to enhance the properties of polylactide (PLA), we have developed melt-spinning techniques to produce both PLA/nanocellulose composite fibres, and a method akin to layered filament winding followed by compression moulding to produce self-reinforced PLA/nanocellulose composites. Poly(L-lactide) (PLLA) fibres were filled with 2 wt.% neat and modified bacterial cellulose (BC) in an effort to improve the tensile properties over neat PLA fibres. BC increased the viscosity of the polymer melt and reduced the draw-ratio of the fibres, resulting in increased fibre diameters. Nonetheless, strain induced chain orientation due to melt spinning led to PLLA fibres with enhanced tensile modulus (6 GPa) and strength (127 MPa), over monolithic PLLA, previously measured at 1.3 GPa and 61 MPa, respectively. The presence of BC also enhanced the nucleation and growth of crystals in PLA. We further produced PLA fibres with 7 wt.% cellulose nanocrystals (CNCs), which is higher than the percolation threshold (equivalent to 6 vol.%). These fibres were spun in multiple, alternating controlled layers onto spools, and subsequently compression moulded to produce unidirectional self-reinforced PLA composites consisting of 60 vol.% PLLA fibres reinforced with 7 wt.% CNC in a matrix of amorphous PDLLA, which itself contained 7 wt.% of CNC. We observed improvements in viscoelastic properties of up to 175% in terms of storage moduli in bending. Furthermore, strains to failure for PLLA fibre reinforced PDLLA were recorded at 17%.  相似文献   

12.
Spray dried agglomerates of Al2O3–ZrO2 (1% Y2O3) with 4 wt.% borosilicate glass were arc plasma sprayed and rapidly quenched into water. Because of the rapid quenching the particles <25 μm were mostly amorphous. After annealing 1 h at 1200 °C the scale of the microstructure of the particles was on the order 30 nm. Hot forging of this powder yielded dense specimens with the width of the ZrO2 phase still less than 100 nm. Since the particle size ranged from 5 to 25 μm and the scale of the particle microstructure was <100 nm, densification was controlled by creep of the particles rather than by the typical hot pressing mechanism of diffusion along the neck between particles to fill the pores. Thus, the scale of the microstructure controls densification rather than the particle size. These powders offer an alternate source for manufacturing nanostructured parts and should be more suitable for hot pressing or forging than nanoparticulate powders.  相似文献   

13.
The fracture resistance of ceramic based composites reinforced by various ceramic fibres can be dramatically enhanced when an efficient fracture mechanism takes place during the crack propagation. Presented work shows an effect of the pyrolysis temperature of the composite matrix on the fracture behaviour of the composite. The matrix is formed from the polysiloxane resin precursor and the reinforcement is a basalt woven fabric. The temperature range under investigation was from 600 °C, where the onset of fracture properties were observed up to 800 °C. Above this temperature basalt fibres suffer by rapid degradation of the microstructure. The optimum stage of the polysiloxane resin transformation maximizing the fracture resistance of the composite was identified. The fractographic analysis of the fracture surfaces revealed the differences in the acting fracture mechanism.  相似文献   

14.
The combined effects of high-energy ball milling (HEBM) and reactive spark plasma sintering (R-SPS) of HfSi2 and C powder mixture on the densification and microstructure of nanostructured HfC-SiC composites were investigated. HEBM significantly promoted the densification and improved the microstructure of the HfC-SiC composites. In contrast, the reactions between HfSi2 and C did not directly promote the densification of the HfC-SiC composites. While the reaction was mostly completed at 1300 °C, the onset temperature of significant densification was 1610 °C. Fine and homogeneously distributed HfC and SiC particles formed by HEBM and R-SPS were the key factors for promoting the densification of the HfC-SiC composites. The fine particles had high surface energy, which provided enough driving force for densification. In addition, the homogeneously distributed SiC particles effectively suppressed the growth of HfC matrix grains during densification.  相似文献   

15.
Calcium carbonate binders were prepared via carbonating the paste specimens cast with steel slag alone or the steel slag blends incorporating 20% of Portland cement (PC) under CO2 curing (0.1 MPa gas pressure) for up to 14 d. The carbonate products, mechanical strengths, and microstructures were quantitatively investigated. Results showed that, after accelerated carbonation, the compressive strengths of both steel slag pastes and slag-PC pastes were increased remarkably, being 44.1 and 72.0 MPa respectively after 14 d of CO2 curing. The longer carbonation duration, the greater quantity of calcium carbonates formed and hence the higher compressive strength gained. The mechanical strength augments were mainly attributed to the formation of calcium carbonate, which caused microstructure densification associated with reducing pore size and pore volume in the carbonated pastes. In addition, the aggregated calcium carbonates exhibited good micromechanical properties with a mean nanoindentation modulus of 38.9 GPa and a mean hardness of 1.79 GPa.  相似文献   

16.
A low cost and reliable ceramic matrix composite fabrication route has been developed. It involves the coating of 2D woven ceramic fibres (Nextel? 720) with oxide nano-size ceramic particles by electrophoretic deposition (EPD) followed by impregnation of the coated fibres with ceramic matrix and warm pressing at 180 °C to produce the “green” component ready for pressureless sintering. The effects of two different weak interface materials, NdPO4 and ZrO2, on the thermomechanical properties of the composites are also examined. Damage mechanisms, such as debonding, fibre fracture, delamination and matrix cracking within the composite plates subjected to tensile loading are analysed using acoustic emission technique and correlated with microstructure. It is shown that the composites with NdPO4 interface, 10% porosity and 40 vol.% fibre loading have superior themomechanical properties in terms of strength and damage-tolerant behaviour in multilayer plate form. The improved sinterability and microstructure stability at moderate temperatures ensure both the fibre integrity and load transfer efficiency resulting in high strength damage-tolerant composites. The final components produced are considered to be suitable for use as shroud seals and insulating plates for combustor chambers in aircraft engines.  相似文献   

17.
The formation kinetics of tricalcium aluminate (C3A) and calcium sulfate yielding calcium sulfoaluminate (C4A3$) and the decomposition kinetics of calcium sulfoaluminate were investigated by sintering a mixture of synthetic C3A and gypsum. The quantitative analysis of the phase composition was performed by X-ray powder diffraction analysis using the Rietveld method. The results showed that the formation reaction 3Ca3Al2O6 + CaSO4  Ca4Al6O12(SO4) + 6CaO was the primary reaction < 1350 °C with and activation energy of 231 ± 42 kJ/mol; while the decomposition reaction 2Ca4Al6O12(SO4) + 10CaO  6Ca3Al2O6 + 2SO2  + O2 ↑ primarily occurred beyond 1350 °C with an activation energy of 792 ± 64 kJ/mol. The optimal formation region for C4A3$ was from 1150 °C to 1350 °C and from 6 h to 1 h, which could provide useful information on the formation of C4A3$ containing clinkers. The Jander diffusion model was feasible for the formation and decomposition of calcium sulfoaluminate. Ca2 + and SO42  were the diffusive species in both the formation and decomposition reactions.  相似文献   

18.
《Ceramics International》2016,42(7):7943-7949
This paper reports the investigation of the performance of Li2O–B2O3–SiO2 (LBS) glass as a sintering aid to lower the sintering temperature of BaO–0.15ZnO–4TiO2 (BZT) ceramics, as well as the detailed study on the sintering behavior, phase evolution, microstructure and microwave dielectric properties of the resulting BZT ceramics. The addition of LBS glass significantly lowers the sintering temperature of the BZT ceramics from 1150 °C to 875–925 °C. Small amount of LBS glass promotes the densification of BZT ceramic and improves the dielectric properties. However, excessive LBS addition leads to the precipitation of glass phase and growth of abnormal grain, deteriorating the dielectric properties of the BZT ceramic. The BZT ceramic with 5 wt% LBS addition sintered at 900 °C shows excellent microwave dielectric properties: εr=27.88, Q×f=14,795 GHz.  相似文献   

19.
The laser floating zone technique was used to grow large 2Al2O3–SiO2 mullite fibres (up to 1.6 mm in diameter and 40 mm in length). The fibres grown at 10 mm/h are single crystalline in nature, while those pulled at higher rates (40 and 100 mm/h) are polycrystalline with a cellular microstructure. The crystals are highly [0 0 1] textured with respect to the fibre axis, as determined by X-ray diffraction analysis. The Raman spectra taken at different orientations corroborate the strong anisotropy observed by X-ray and SEM on both single crystalline and textured polycrystalline samples.Four point bending tests and ultramicroindentation Vickers experiments were performed at room temperature in order to characterize the mechanical properties. The presence of lamellar inclusions in the single crystalline fibres decreases the flexural strength (431 MPa) and the fracture toughness (1.2 MPa.m1/2) compared to the polycrystalline ones (631 MPa and 1.6 MPa.m1/2). However, the absence of grain boundaries in the single crystals leads to higher ultramicrohardness (HV = 15.6 GPa) and Young's modulus (E = 170 GPa) than those of the polycrystalline fibres (14.2 and 145 GPa), where a glassy intergranular phase exists.  相似文献   

20.
Carbon burnout and densification of self-constrained low temperature co-fired ceramic (LTCC) are investigated using thermal analysis techniques. Slow heating rates and holding at a temperature higher than initial crystallization temperature of the glass component show evidence of retarding the densification of the self-constrained LTCC. Based on these results, it is proposed that the fabrication of embedded structures in a multi-layer self-constrained LTCC platform could be achieved by controlling carbon burnout with a multi-step co-firing profile, which can ensure complete carbon burnout without affecting the densification of LTCC structures. Using this approach, fabrication of an embedded cavity with dimensions of 10 mm × 10 mm × 0.50 mm in a self-constrained LTCC platform is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号