首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为考察支主管内浇灌轻骨料混凝土和支管搭接率(支管偏心率)对高强方钢管搭接K型节点受力性能的影响,对灌浆节点和空心节点进行了主管轴压静力加载试验,获得了搭接K型节点的破坏模式、承载力、节点区应变分布及演化.试验结果表明:支管搭接焊缝开裂是灌浆节点的典型破坏模式,空心节点的破坏模式为主管壁受压屈曲和支管搭接焊缝开裂;在支主管内浇灌轻骨料混凝土显著提高了搭接K型节点的承载力,灌浆节点的承载力较空心节点提高55.5%~80.5%;支管搭接率过大或过小均会降低搭接K型节点承载力.  相似文献   

2.
通过对折线加强隔板贯通方钢管轻骨料混凝土柱-H形钢梁异型节点和基本型异型节点试件进行低周往复加载试验,研究了隔板折线加强构造对节点破坏形态、承载力、塑性转角、滞回性能、骨架曲线、刚度退化和耗能等的影响。试验结果表明:基本型异型节点在刚度较大、几何尺寸变化较大的大截面梁翼缘对接焊缝侧边开裂,节点的塑性转角约为0.028 rad;隔板折线加强异型节点的主要破坏模式为隔板折线加强区形成塑性铰及延性拉断、梁腹板焊接孔开裂及梁翼缘对接焊缝断裂,其塑性转角可达0.034~0.057 rad,承载力和耗能能力较基本型异型节点分别提高16.5%~47.0%和21.2%~144.0%;隔板贯通方钢管轻骨料混凝土柱-H形钢梁异型节点中,大截面梁先于小截面梁破坏,柱壁板间焊缝未发生撕裂破坏,轻骨料混凝土未发生压碎、拉裂、剥离或滑移破坏,节点的抗震性能主要受钢梁和隔板间焊缝破坏(而非轻骨料混凝土)的影响。  相似文献   

3.
对圆弧加强隔板贯通方钢管轻骨料混凝土柱-H形梁与箱形梁异形节点和基本型异形节点进行循环加载试验,研究了贯通隔板圆弧扩大头构造对异形节点抗震性能的影响,获得了该类节点的破坏模式、滞回性能、承载力和塑性转角等抗震性能参数。基于试验结果和力学分析,建议了异形节点域的抗弯、抗剪计算模型,推导了异形节点域的抗弯、抗剪承载力计算公式。结果表明:基本型异形节点滞回曲线劣化明显,节点在刚度较大、几何突变的箱形梁翼缘对接焊缝边缘脆断;隔板圆弧加强异形节点的滞回曲线饱满,承载能力和刚度退化不明显,主要破坏模式为在隔板圆弧加强区形成塑性铰,梁翼缘对接焊缝延性开裂;加载至节点破坏时,贯通隔板与柱壁板间焊缝未发生撕裂破坏,节点域内轻骨料混凝土未压碎或拉裂,轻骨料混凝土与隔板和柱壁板间未发生剥离或滑移;隔板圆弧加强异形节点的塑性转角可达0.038~0.056 rad,承载力较基本型异形节点提高21.5%~56.2%。  相似文献   

4.
为了解平面X形圆钢管混凝土节点的平面外受弯性能,分别对4个主管填混凝土和4个支管填混凝土的平面X形圆钢管节点进行支管平面外弯矩作用下的试验研究。考察了支管、主管分别填混凝土2种情况下节点的破坏模式和应力分布,并分析了钢管内混凝土对节点平面外抗弯刚度及承载力的影响。试验中支管填混凝土节点出现了主管塑性、支管局部屈曲和支管受拉侧焊缝或热影响区管壁开裂的破坏模式,主管填混凝土节点则发生了支管局部屈曲及支管受拉侧焊缝开裂破坏。主管填混凝土节点与支管填混凝土节点相比,由于主管内填混凝土对于主管管壁的局部变形起到明显的约束作用,明显提高了主管的径向刚度,增大了节点的平面外抗弯刚度。实测节点承载力与欧洲规范计算的空钢管节点理论承载力比较表明,主管内填混凝土能极大提高节点平面外受弯承载力,最大可提高132%;支管内填混凝土可使节点平面外受弯承载力最大提高60%。  相似文献   

5.
对平面K形圆主管方支管节点的承载力进行试验研究,进行了5个空钢管节点和1个主管内灌混凝土节点的静力单调加载试验。介绍了节点试验方案,考察了节点的受力性能、破坏模式和承载力,给出了试件支管的变形曲线以及折算应变曲线,并对支管壁厚、主管内浇灌混凝土对节点承载力、刚度和延性的影响进行了分析。试验结果表明:现行国内外规范中圆钢管和方钢管节点承载力计算值明显低于试验值,已有的计算公式都不能准确计算圆主管方支管节点的承载力;增加支管壁厚改变了节点的破坏模式并明显提高了节点承载力和延性;主管内灌混凝土虽提高了承载力和初始刚度但延性并没有得到显著提高;圆主管方支管节点区域的变形主要源于受拉支管的局部变形。在节点破坏模式、变形曲线、承载力和塑性发展等方面将有限元计算值与试验结果进行比较,结果吻合良好,可以作为进一步分析的基础。  相似文献   

6.
为研究钢管混凝土加劲环管板节点在轴向拉力作用下的受力性能,开展了3个节点试件的单调加载试验,分别得到了管板节点加强前后的荷载-位移曲线和破坏模式。试验结果表明:SPR节点在单调荷载作用下主管和加劲环发生局部屈曲,表现为延性破坏;CFT节点在荷载作用下主管壁发生剪切破坏,荷载-位移曲线没有明显的屈服段,表现为脆性破坏;CFTR节点在荷载作用下,连接板处加劲环发生剪切破坏,同时加劲环局部V形屈曲;加劲环能够明显提高管板节点的承载力,同时改善节点的塑性性能;相较于主管外设加劲环,主管内部填充混凝土具有更好的承载力提升效果,节点的刚度变大但塑性性能变差;钢管混凝土加劲环管板节点具有加劲环和混凝土的双重特性,在显著提高节点承载力的同时保障节点塑性性能。在264个有限元模型参数分析的基础上,得到了双加劲环管板节点受拉承载力的计算方法,给出了加劲环厚度和宽度组合的设计建议。基于极限分析的塑性铰线方法,推导出SP节点和SPR节点极限承载力的理论计算模型,计算结果与有限元结果吻合较好。  相似文献   

7.
各国现行钢结构规范中,对螺栓连接钢管节点的极限承载力均未提及具体的构造措施及计算方法。通过对8个带加劲肋的螺栓连接钢管节点试件进行了单轴受压承载力试验研究,探讨了该类节点在单轴受压条件下的承载力-变形曲线和破坏模式,并对环板、主管及支管的应力-应变情况进行了分析。研究表明:仅通过单轴试验就推出所有破坏模式过于武断,建议限定说明,使其更合理;采用环板、十字连接板对支管与主管进行螺栓连接并设置加劲肋的钢管节点,其破坏模式为环板局部面外失稳,设置加劲肋能有效抑制整体的面外失稳;其次,加劲肋板贯穿主管可以提高节点的整体刚度和极限承载力,且施工方便,是值得采用的节点设计方法之一。  相似文献   

8.
通过对变截面方钢管轻骨料混凝土柱-H钢梁圆弧扩大头隔板贯通节点和基本型节点进行低周往复加载试验,分析了该类节点的破坏形态、滞回性能、延性、承载力、刚度退化与耗能能力等。结果表明:隔板圆弧扩大头节点先在隔板圆弧扩大区形成塑性铰,随后梁腹板焊接孔开裂,梁翼缘对接焊缝延性拉断;基本型节点在梁翼缘对接焊缝侧边开裂,裂纹扩展迅速至脆断;隔板圆弧扩大头构造明显提高了节点延性和耗能能力,有效降低了节点区焊缝过于密集和焊接热影响区的交叉影响,避免了梁翼缘对接焊缝处的应力集中和过早脆断;隔板圆弧扩大头节点的承载力、塑性转角和耗能能力较基本型节点分别提高16.09%~22.25%、17.34%~63.94%和24.97%~44.32%;加载到节点破坏时,节点域和柱内轻骨料混凝土未发生压碎、剥离、拉裂或滑移破坏,说明该类节点的抗震性能主要受钢梁与隔板间焊缝影响。  相似文献   

9.
X型方钢管混凝土受压节点试验研究   总被引:3,自引:0,他引:3  
本文通过试验研究X型方钢管混凝土受压节点的破坏形态和破坏过程 ,分析了节点承载力和初始刚度的主要影响因素。试验结果说明 ,随着节点支管宽度与主管宽度的比值的增加 ,X型方钢管混凝土受压节点的承载力和刚度都有明显的提高 ;随着节点主管内部混凝土填充长度的增加 ,X型方钢管混凝土受压节点的承载力有明显提高  相似文献   

10.
圆钢管桁架在主管内填筑混凝土,可有效提高其承载力。为了获得圆钢管混凝土桁架K形节点受力性能和承载力计算方法,研究了在受拉或受压支管处K形节点的失效模式和破坏机理;基于圆钢管混凝土K形节点在不同失效模式下的破坏机理和受力状态,分别对支管截面形式为圆形或矩(方)形的圆钢管混凝土K形节点建立合理的简化计算模型,推导出不同失效模式下K形节点极限承载力计算公式,并给出相应的极限承载力建议公式。试验验证了圆钢管混凝土K形节点的试验值与计算值吻合较好,研究表明圆钢管混凝土K形节点的极限承载力计算公式的准确性,可应用于圆钢管混凝土桁架结构计算和设计,也为相关标准建立和完善提供理论依据。  相似文献   

11.
对隔板贯通方钢管轻骨料混凝土柱-H形钢梁异型节点试件进行了循环加载试验,并进行基于结构钢椭球面断裂模型及耦联的屈服模型和轻骨料混凝土二次曲面通用破坏面模型的数值模拟和破坏机理分析.数值分析结果表明:基本型异型节点梁翼缘对接焊缝侧边应力集中严重,断裂风险大;贯通隔板折线加强构造降低了梁翼缘对接焊缝处的应力集中程度和断裂风险,使屈服区形成于远离节点区的隔板折线加强段内;节点域内轻骨料混凝土的应力场未达到通用破坏面模型计算的强度值,未发生压碎、拉裂或滑移破坏.  相似文献   

12.
《钢结构》2017,(10):29-33
对1个方钢管K型节点试件和主管填充混凝土的6个K型方钢管节点试件进行拟静力试验,以研究支管尺寸、支管间隙等参数对方钢管混凝土K型节点破坏模式和延性的影响,并与K型方钢管节点试件进行对比。主管填充混凝土的K型方钢管节点的破坏模式包括支管与主管之间的焊缝破坏、支管受拉断裂、支管鼓曲以及主管撕裂;支管间隙较大的试件更容易出现主管撕裂破坏。主管填充混凝土后,其径向刚度显著提高,支管与主管连接处的应力集中程度也有所改善,节点的屈服荷载和峰值荷载有不同程度的提高,尤其是受压循环的峰值荷载提高幅值达到60%以上。主管填充混凝土后,K型方钢管节点试件的延性以及耗能系数都有所降低。  相似文献   

13.
建立了钢管混凝土K形节点的精细化有限元模型,基于模型试验数据对有限元模型进行校核,试验值与有限元计算值最大相对偏差为7. 26%,平均相对偏差为3. 72%,说明有限元模型具有较高的精度。采用理论分析和数值模拟方法对钢管混凝土K形节点破坏模式和极限承载力影响因素进行研究,结果表明:钢管混凝土K形节点荷载-位移曲线可分为弹性、弹塑性和破坏三个阶段,破坏模式为受压支管接头局部屈曲破坏和受拉支管接头处主管扯裂破坏;节点极限承载力随着主管径厚比、支管径厚比和支管间隙的减小而变大,随着支管与主管外径比、支管与主管壁厚比、核心混凝土等级的增加而变大,随着支管与主管轴线夹角的增大而先变小再变大,随着主管轴压力水平先变大后变小;节点极限承载力增长系数与节点尺寸缩放系数之间呈正相关,基本呈线性增长,节点极限承载力增长系数变化速度大于尺寸缩放系数,最后提出了钢管混凝土K形节点不同破坏模式的极限承载力建议公式。  相似文献   

14.
采用精细化有限元分析方法对T形钢管混凝土插拔连接节点的平面内受弯性能进行了研究.首先通过与试验结果进行对比,验证了精细化有限元模型的正确性和准确性.在此基础上研究了主管壁厚、支管壁厚、主管形式和混凝土强度对节点破坏模式和承载力的影响.结果表明,钢管混凝土插板连接节点的破坏模式和钢管插板连接节点不同,为主管冲剪破坏和支管...  相似文献   

15.
为研究支管灌混凝土X形圆钢管节点的轴压性能,对6个不同截面几何参数的支管灌混凝土X形圆钢管节点进行了单调加载试验。介绍了节点试验方案,揭示了节点破坏模式,给出了加载点荷载 端位移曲线、支管轴力-主管壁变形曲线以及节点区域折算应变分布曲线,并将支主管外径比β、主管径厚比γ和支主管壁厚比τ对节点轴压承载力和弹性轴压刚度的影响进行了分析。试验研究结果表明:节点试件均表现出较好延性;所有试件的主管壁最大竖向变形位移都大于0.03倍主管直径,在判定该类圆钢管节点轴压承载力时应该采用极限变形准则;节点轴压承载力与弹性轴压刚度都随着β和τ的增加以及γ的减小而提高;所有试件的支管根部测点都未进入塑性且主管都是鞍点和冠点之间的中间测点首先进入塑性;在试验参数条件下,支管灌混凝土对X形圆钢管节点轴压承载力提高不明显,甚至会降低其轴压承载力。目前GB 50017-2003《钢结构设计规范》公式不能较好地计算支管灌混凝土X形圆钢管节点轴压承载力。  相似文献   

16.
β(支管与主管外径比)较大的焊接方钢管T型节点因主管连接焊缝韧性差和质量缺陷等因素,可能因焊缝开裂而导致节点丧失承载力。本文提出在主管节点区将角钢沿主管管壁焊接在主管侧壁和上表面上,通过角钢将支管轴力传至主管的侧壁,这不仅避免主管连接焊缝开裂所导致的脆性破坏,也可充分发挥主管节点区板件的塑性耗能作用。基于两支角钢加固T型节点和普通T型节点的拟静力试验研究,研究了主管局部加固节点的破坏过程、破坏模式,发现加固节点屈曲发生的范围大、屈曲幅度大,节点承载力下降也比较平缓;另外,加固节点的滞回曲线饱满,滞回环包围面积明显大于未加固节点,加固节点具有良好的抗震能力。  相似文献   

17.
方钢管相关节点因钢管径向刚度较小,可能因径向变形过大导致节点失效,因此,节点区需要进行加固,相比外部加劲方式,内置加劲板可显著提高节点的静力承载力、减小节点变形。为探讨设置内加劲板后节点的抗震性能,论文采用数值分析的方法探讨了不同加劲构造情况下节点的破坏模式、节点的延性和耗能能力。分析结果表明,加劲板的设置改变了节点的破坏模式、由主支管交界处的局部屈曲转移到了离主支管交界处一段距离处。  相似文献   

18.
《钢结构》2018,(11)
加劲相贯焊K型节点在传统相贯焊K型节点的基础上添加了加劲板,可以有效提高承载力。为得到加劲相贯焊K型节点的设计计算方法,开展了试验和理论研究。设计了具有不同节点尺寸参数的9个试件进行试验研究,同时进行相应的有限元计算分析。研究表明:加劲相贯焊节点承载力增加的部分随加劲板宽度与直径之比的提高而提高。加劲相贯焊节点的破坏模式除表现出传统相贯焊节点破坏特征外,还出现加劲板焊缝开裂和支管拉裂等破坏模式。结合69个试件的有限元计算分析结果和试验结果,回归得到了承载力简化计算方法,该方法兼具经济性和安全性。  相似文献   

19.
通过3片开孔钢板(PBL)加劲型矩形钢管混凝土桁架和1片矩形钢管混凝土桁架受弯性能试验,研究主管内设PBL及节点支主管宽度比β对桁架破坏模式、支主管应变变化和极限承载力的影响,对桁架竖向挠度限值进行分析,并探讨节点变形对桁架整体变形的影响。结果表明:矩形钢管混凝土桁架和PBL加劲型矩形钢管混凝土桁架均发生节点破坏,主管内设PBL改变了管内混凝土的开裂模式,有效限制了混凝土裂缝发展,使钢管与混凝土更好地协同受力;矩形钢管混凝土桁架和β分别为0.5,0.75,0.875的PBL加劲型矩形钢管混凝土桁架的节点变形占桁架整体变形比例分别为33.43%,24.44%,23.69%和21.44%,PBL有效限制受拉支管处主管的外凸变形,使节点变形占桁架整体变形比例减小,提高节点承载力,但对受压支管处主管变形基本无影响;对于矩形钢管混凝土和PBL加劲型矩形钢管混凝土组合桁梁桥竖向挠度限值可参考《公路钢结构桥梁设计规范》(JTG D64—2015)取为桁架全长的1/500。  相似文献   

20.
为研究钢管混凝土空间相贯节点的空间效应,通过精细化有限元模拟对钢管混凝土空间相贯节点的受力性能进行了研究。建模时考虑了材料非线性、几何非线性、钢管与混凝土之间的接触非线性,建立了钢管混凝土KK形相贯节点的精确有限元模型,研究了空间效应对节点承载能力和破坏模式的影响。结果表明:钢管混凝土空间相贯节点的承载力远高于钢管空间相贯节点;钢管混凝土空间相贯节点和平面相贯节点的破坏模式相同,破坏模式有两种,一种是主管管壁冲剪破坏和受压支管屈服联合破坏,发生在支管管壁较薄的情况,另一种是主管管壁冲剪破坏;空间效应对钢管和钢管混凝土相贯节点承载力的影响不同,对于钢管混凝土相贯节点,支管空间夹角60°的节点承载力较平面节点有所降低,在设计时应该考虑空间效应的影响;空间效应对钢管混凝土空间相贯节点刚度影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号