首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some experimental investigations on the microstructure and compressive strength development of silica fume blended cement pastes are presented in this paper. The silica fume replacement varies from 0% to 20% by weight and the water/binder ratio (w/b) is 0.4. The pore structure by mercury intrusion porosimetry (MIP), the micromorphology by scanning electron microscopy (SEM) and the compressive strength at 3, 7, 14, 28, 56 and 90 days have been studied. The test results indicate that the improvements on both microstructure and mechanical properties of hardened cement pastes by silica fume replacement are not effective due to the agglomeration of silica fume particles. The unreacted silica fume remained in cement pastes, the threshold diameter was not reduced and the increase in compressive strength was insignificant up to 28 days. It is suggested that the proper measures should be taken to disperse silica fume agglomeration to make it more effective on improving the properties of materials.  相似文献   

2.
The effects of adding sugar to cement paste on hydration and microstructure were observed. While 1% sugar delayed hydration as expected, the delay period was shortened by increased curing temperature. When samples containing sugar began to react, hydration progressed very quickly and the degree of hydration soon surpassed that of control samples. Sugar addition increased the surface area and altered the pore size distribution, as measured by nitrogen, of cement pastes. Results indicate that sugar not only alters the rate of cement paste hydration, but the microstructure of calcium-silicate-hydrate (C-S-H) as well.  相似文献   

3.
In this contribution, results from NMR relaxometry experiments on hydrating white cement pastes are presented. Nonexponential effects are discussed and quantified by stretched-exponential analysis. From the magnetization decay curves in transverse relaxation experiments, the degree of hydration is estimated and a semiempiric model is proposed describing the relationship between the microstructure development in the hydrating cement and the degree of hydration.  相似文献   

4.
《应用陶瓷进展》2013,112(4):213-218
Abstract

Abstract

This paper reports the effect of silica fume (SF), nanosilica (NS) and superplasticiser (SP) addition on the rheological behaviour of Portland cement pastes with different amounts of SF (0-10%), NS (1%) and SP (0-0·4%) and water to binder (W/B) ratio of 0·4. A rheometer with concentric cylinders geometry was used and the maximum shear rate of 100?s?1 was applied. SP decreased the hysteresis area, while SF and NS increased it. Samples with NS showed high slopes in descending curves, while samples with SF and high dosages of SP showed lower values. In both cases, the Bingham model resulted in negative values for the yield stress, so that the Herschel-Bulkley model was used instead. The spread values variation on flow table did not follow a linear regression model. For this investigation, commercially available SF and NS were used.  相似文献   

5.
This paper presents the results of an experimental investigation on the effect of silica fume on pore structure and diffusivity of low porosity cement pastes. For cement pastes with w/c ratios in the range of 0.20 to 0.30, a 10% replacement of the cement with silica fume only reduced the total porosity to a small extent. However, a refinement of the pore size distribution took place in such a way that the content of larger pores was reduced for decreasing w/c ratio. For pure portland cement pastes the effect of a certain constant change of w/c ratio on the chloride diffusivity was substantially higher at high w/c ratios than at low w/c ratios. A 10% replacement with silica fume reduced the chloride diffusivity for all w/c ratios so much that the effect of w/c ratio became less important.  相似文献   

6.
In this investigation, two mixes were used: ordinary Portland cement (OPC) and a blended cement prepared with the partial substitution of OPC by 10 mass% silica fume (SF). The setting and hardening characteristics were monitored by the aid of electrical conductivity as a function of curing time. The shear stress and electrical conductivity were studied at different temperatures, namely, 20, 35, 45 and 55 °C. As the temperature increases, the shear stresses decrease with the increase of shear rate. The height of electrical conductivity peaks of superplasticized cement pastes increases due to the increase of the paste fluidity. In the presence of 1.0% polycarboxylate (PC), the electrical conductivity of cement pastes decreases from 1 to 28 days. PC retards the hydration of cement pastes. The presence of PC extended the setting times of cement pastes at 35 °C than at 20 °C due to the increase in the adsorption capacity at this temperature. PC extends the dormant stage of the hydration process and delays the onset of the accelerating stage, without affecting its rate.  相似文献   

7.
We present preliminary results of the first NMR T1-T2 two-dimensional relaxation correlation experiments performed using a one-sided NMR system in cement based materials. Two-dimensional correlation relaxometry has itself only recently been demonstrated in cement paste where it proved to be a particularly sensitive probe of pore-water dynamics providing direct information on exchange of water between the gel and capillary pore networks. Further to this we have observed differences in the structural development of a selection of cement pastes throughout the early stages of hydration and verified the theoretical frequency dependence of the ratio T1 / T2. When coupled with instrumentation developments in one-sided NMR magnets the way is opened to detailed, spatially resolved studies of the development of hydration and porosity in the surface layers (top 50 mm) of cementitious materials. A new magnet, suitable for such applications, is discussed.  相似文献   

8.
In this study, high-calcium fly ash (HCFA) and silica fume (SF) were used as mineral admixtures. The effect of these admixtures on the microstructure of cement paste was investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The reaction of HCFA and SF with portlandite, which occurs in Portland cement (PC), forms a new calcium-silicate-hydrate (C-S-H) gel.  相似文献   

9.
The low natural abundance and the long spin lattice relaxation time of 29Si lead to long measurement times and/or low signal-to-noise ratios using 29Si magic angle spinning NMR spectroscopy. By contrast, samples containing paramagnetic iron ions have much shorter relaxation times, making measurements up to seven times more efficient, but at the same time making quantitative analysis unreliable. To solve the problem, the spin-lattice relaxation times of ordinary Portland cement (opc) and silica fume with and without iron content has been determined with inversion recovery experiments. The effect of varying the spectrum repetition time on the quantitative analysis is demonstrated for mixtures of opc with silica fume. For opc and silica fume with iron impurities repetition times as short as 5 s has permitted accurate quantitative analysis of the silicates present in these materials.  相似文献   

10.
The effect of water/cement ratio of hardened cement pastes in the range 0.23 to 0.71 on the micropore structure as revealed by mercury intrusion and nitrogen adsorption porosimetry is discussed. The relationship between these micropores and the solid minerals as revealed by electron microscopy is also discussed.  相似文献   

11.
粉煤灰/硅灰复合掺合料对水泥净浆性能的影响   总被引:5,自引:0,他引:5  
冯辉红  鲁黎  陈静思  王果  张永臣 《陕西化工》2014,(3):389-391,394
研究了水泥标准稠度用水量、粉煤灰掺量、硅灰掺量、粉煤灰与硅灰双掺对水泥净浆性能的影响.结果表明,硅灰使水泥净浆需水量明显增加,粉煤灰、硅灰双掺可克服单掺粉煤灰早期强度低的缺点,短期内能提高水泥净浆的抗压强度.  相似文献   

12.
This paper presents a study on the influence of mix proportions of cementitious materials on their transfer properties, namely porosity and gas permeability. These latter are known as durability indicators. The work is performed on a wide range of cement pastes and mortars (24 compositions). These compositions are defined by mix proportion parameters (water/cement ratio, limestone filler/cement ratio, and amount of superplasticizer and volume fraction of paste). To characterize these materials, an experimental campaign was carried out, including different types of test (water porosimetry, mercury intrusion porosimetry, desorption isotherms and gas permeability). The influence of the composition parameters on the studied durability indicators is highlighted and correlation between gas permeability and microstructural properties (total porosity and critical pore diameter) is established. Finally, a method to predict materials permeability from that of the cement paste is proposed.  相似文献   

13.
Studies on the performance of cementitious products with silica fume (SF) are very important, as it is one of the inevitable additives to produce high-performance concrete (HPC). In this study, some experimental investigations on the influence of SF on various preliminary properties of cement pastes and mortars are reported. The properties included specific gravity and normal consistency (NC) of cement and air content and workability of mortar with different SF contents. Pozzolanic and chemical reactions of SF have been studied on setting times, soundness and shrinkage of cement pastes. Further, strength developments in compression and tension in cement mortars have also been studied at various SF contents. SF was varied from 0% to 30% at a constant increment 2.5/5% by weight of cement. Test results show that the SF changes the behavior of cement pastes and mortars significantly. It has been observed that the water-binder (w/b) (cement+SF) ratio seemed to play an important role for the performance of the products with higher SF contents. NC, soundness and drying shrinkage of cement pastes and the strength of mortar increase as the SF content increases, while the initial setting times of cement pastes and the air content and workability of mortar decrease as the SF content increases. However, hardly any influence has been observed on the final setting times of cement pastes. The early age hydration reactions of C3A and C3S increase with the addition of SF. The optimum SF content ranges between 15% and 22%.  相似文献   

14.
The diffusion rate for chloride in cement paste is a parameter of major significance for the resistance of concrete structures to seawater environments. The results of this investigation show that an addition of silica fume or flyash in ordinary Portland cement paste considerably reduces the diffusion rate for chloride. Other factors of major importance for the resistance of the concrete are the composition of the pore solution and the capacity of the cement paste to bind chloride chemically. Measurements of pH values in pore solution pressed out of cement paste show that mineral additions reduce the pH value and this has a negative effect on the capacity of the cement paste to resist reinforcement corrosion.A theoretical estimate, based on partly uncertain material parameters, nevertheless indicates that an addition of silica fume or flyash added in appropriate amounts extends the initiation time for diffusion-controlled chloride-initiated reinforcement corrosion.  相似文献   

15.
Influence of polymer on cement hydration in SBR-modified cement pastes   总被引:1,自引:0,他引:1  
The influence of styrene-butadiene rubber (SBR) latex on cement hydrates Ca(OH)2, ettringite, C4AH13 and C-S-H gel and the degree of cement hydration is studied by means of several measure methods. The results of DSC and XRD show that the Ca(OH)2 content in wet-cured SBR-modified cement pastes increases with polymer-cement ratio (P/C) and reaches a maximum when P/C is 5%, 10% and 10% for the pastes hydrated for 3 d, 7 d and 28 d, respectively. With wet cure, appropriate addition of SBR promotes the hydration of cement, while the effect of SBR on the content of Ca(OH)2 and the degree of cement hydration is not remarkable in mixed-cured SBR-modified cement pastes. XRD results illustrate that SBR accelerates the reaction of calcium aluminate with gypsum, and thus enhances the formation and stability of the ettringite and inhibits the formation of C4AH13. The structure of aluminum-oxide and silicon-oxide polyhedron is characterized by 27Al and 29Si solid state NMR spectrum method, which shows that tetrahedron and octahedron are the main forms of aluminum-oxide polyhedrons in SBR-modified cement pastes. There are only [SiO4]4− tetrahedron monomer and dimer in the modified pastes hydrated for 3 d, but there appears three-tetrahedron polymer in the modified pastes hydrated for 28 d. The effect of low SBR dosage on the structure of aluminum-oxide and silicon-oxide polyhedron is slight. However, the combination of Al3+ with [SiO4]4− is restrained when P/C is above 15%, and the structure of Al3+ is changed obviously. Meantime, the polymerization of the [SiO4]4− tetrahedron in C-S-H gel is controlled.  相似文献   

16.
The fresh state of concrete is becoming increasingly important in furthering the types of applications of today's construction world. Processing techniques have resulted in technologies such as self-consolidating concrete and depend on the microstructural changes that take place during and immediately after mixing and placing. These changes to the microstructure reflect the flocculation behavior between the particles in suspension. The ability to modify this behavior allows control over the balance among flowability and shape-stability of concrete. This study investigates how clay admixtures affect the microstructure of cement pastes from a rheological stand point. Shear and compressive rheology techniques are used to measure how the solids volume fraction of suspensions with different admixtures evolves with stress. Based on these relationships, the effectiveness of clays on the balance between flowability and shape-stability is measured. Results are consistent with green strength tests performed on concrete mixes derived from the cement paste mixes.  相似文献   

17.
This paper discussed the flexural and the compressive strengths of polyacrylic ester (PAE) emulsion and silica fume (SF)-modified mortar. The chloride ion permeability in cement mortar and the interfacial microhardness between aggregates and matrix were measured. The chemical reactions between polymer and cement-hydrated product were investigated by the infrared spectral technology. The results show that the decrease of porosity and increase of density of cement mortars can be achieved by the pozzolanic effect of SF, the water-reducing and -filling effect of polymer. Lower porosity and higher density can give cement mortars such properties as higher flexural and compressive strength, higher microhardness value in interfacial zone and lower effective diffusion coefficient of chloride ion in matrix.  相似文献   

18.
The present paper is directed towards developing a better understanding on the isolated contribution of silica fume on the tensile strengths of high-performance concrete (HPC). Extensive experimentation was carried out over water-binder ratios ranging from 0.26 to 0.42 and silica fume-binder ratios from 0.0 to 0.3. For all the mixes, compressive, flexural and split tensile strengths were determined at 28 days. The compressive, as well as the tensile, strengths increased with silica fume incorporation, and the results indicate that the optimum replacement percentage is not a constant one but depends on the water-cementitious material (w/cm) ratio of the mix. Compared with split tensile strengths, flexural strengths have exhibited greater improvements. Based on the test results, relationships between the 28-day flexural and split tensile strengths with the compressive strength of silica fume concrete have been developed using statistical methods.  相似文献   

19.
Benchtop 1H NMR relaxometry was used to measure the fine temporal resolution of microstructural development during the early hydration of ordinary Portland cement under different levels of retardation. Isothermal calorimetry was used to correlate the various distinct events in water transformation with the progress of hydration reactions. The low field (2 MHz) NMR technique used in this study detected signals from only the mobile water contained in the capillary and gel pores with water incorporation into hydration products highly correlated with heat production, including the reproduction of subtle features. Following the induction period, an initial T2 decline period, which encompassed the acceleration period of hydration, was characterized by incorporation of water into hydration products without any associated gel pore formation. Gel pore formation commenced at the peak in hydration rate, indicating a change in the morphology of C–S–H growth. All the observed features of microstructural development were preserved under retardation.  相似文献   

20.
The influence of Sea, ground, Nile and drinking waters on the microstructure of some hydraulic cements is investigated by means of X-ray diffraction analysis. The calcium sulfo- and carboaluminate hydrates form well with a water cement ratio of 2. Seawater leads to the precipitation of gypsum. The hydration products of ordinary portland cement (OPC) pastes hydrated for a year with the four water types are similar. A survey on the analysis of waters used is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号