首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the static-dynamic hybrid communication scheduling and control co-design is proposed for the networked control systems (NCSs) to solve the capacity limitation of the wireless communication network. The analytical most regular binary sequences (MRBSs) are used as the communication scheduling function for NCSs. When the communication conflicts yielded in the binary sequence MRBSs, a dynamic scheduling strategy is proposed to on-line reallocate the medium access status for each plant. Under such static-dynamic hybrid scheduling policy, plants in NCSs are described as the non-uniform sampled-control systems, whose controller have a group of controller gains and switch according to the sampling interval yielded by the binary sequence. A useful communication scheduling and control co-design framework is proposed for the NCSs to simultaneously decide the controller gains and the parameters used to generate the communication sequences MRBS. Numerical example and realistic example are respectively given to demonstrate the effectiveness of the proposed co-design method.  相似文献   

2.
This paper considers stabilization of discrete-time linear systems, where wireless networks exist for transmitting the sensor and controller information. Based on Markov jump systems, we show that the coarsest quantizer that stabilizes the WNCS is logarithmic in the sense of mean square quadratic stability and the stabilization of this system can be transformed into the robust stabilization of an equivalent uncertain system. Moreover, a method of optimal quantizer/controller design in terms of linear matrix inequality is presented. Finally, a numerical example is provided to illustrate the effectiveness of the developed theoretical results.  相似文献   

3.
Networked predictive control system (NPCS) has been proposed to address random delays and data dropouts in networked control systems (NCSs). A remaining challenge of this approach is that the controller has uncertain information about the actual control inputs, which leads to the predicted control input errors. The main contribution of this paper is to develop an explicit mechanism running in the distributed network nodes asynchronously, which enables the controller node to keep informed of the states of the actuator node without a priori knowledge about the network. Based on this mechanism, a novel proactive compensation strategy is proposed to develop asynchronous update based networked predictive control system (AUBNPCS). The stability criterion of AUBNPCS is derived analytically. A simulation experiment based on Truetime demonstrates the effectiveness of the scheme.  相似文献   

4.
This paper focuses on the problem of fault-tolerant controller (FTC) design for uncertain networked control systems (NCSs) with random delays and actuator faults. A new fault model is proposed to represent more class of actuator faults. More precisely, the NCSs with random delays and the possible actuator faults are modeled as a Markovian jump system (MJS) with incomplete transition probabilities (TPs) and then LMI-based sufficient conditions are derived to ensure the stochastic stability of the closed-loop system. The sufficient conditions are constructed to synthesize the mode-dependent static-output feedback (SOF) control laws. Feasibility and reliability of the proposed FTC against actuator faults are indicated through simulation results.  相似文献   

5.
The optimal tracking performance of single-input single-output (SISO) discrete-time networked control systems (NCSs) with the packet dropouts and channel noise is studied in this paper. The communication channel is characterized by three parameters: the packet dropouts, channel noise and the encoding and decoding. The explicit expression of the optimal tracking performance is obtained by using the spectral factorization. It is shown that the optimal tracking performance dependents on the nonminimum phase zeros, unstable poles of the given plant, as well as the packet dropout probability, channel noise and the encoding and decoding. The optimal tracking performance is improved by two-parameter compensator. Finally, a typical example is given to illustrate the theoretical results.  相似文献   

6.
This paper investigates the problem of optimal tracking performance of networked control systems (NCSs) with quantization and packet-dropouts. The system under consideration is linear time-invariant (LTI), multi-input multi-output (MIMO), where an H2 norm of error signal between the reference input and the system output is used as the tracking performance index. The impacts of packet-dropouts in the communication channel and the quantized input and output are studied. The goal is to obtain the minimal error in tracking a random signal, by searching through all possible stabilizing two-parameter controllers. It is shown that, the minimum value of tracking error is closely related to the reference input signal direction, the non-minimum phase zeros and unstable poles of the given plant, including the locations and directions. We also demonstrated the quantization error and the packet-dropouts may degrade the tracking performance. A typical example is given to evaluate the theoretical results.  相似文献   

7.
《ISA transactions》2014,53(6):1746-1753
This paper investigates the problem of stability analysis and stabilization for networked control systems with the network-induced delay and data dropout. In order to obtain less conservative results, a novel augmented Lyapunov–Krasovskii functional is introduced and new free-weighting matrices are employed to make some extra degrees of freedom in the sufficient stabilizability condition. The gain of the memoryless state-feedback controller is computed by solving a set of linear matrix inequalities (LMIs). Illustrative examples are given to verify the applicability and outperformance of the proposed method compared to the existing approaches in the literature.  相似文献   

8.
This paper investigates the optimal modified tracking performance of multi-input multi-output (MIMO) networked control systems (NCSs) with packet dropouts and bandwidth constraints. Some explicit expressions are obtained by using co-prime factorization and the spectral decomposition technique. The obtained results show that the optimal modified tracking performance is related to the intrinsic properties of a given plant such as non-minimum phase (NMP) zeros, unstable poles, and their directions. Furthermore, the modified factor, packet dropouts probability and bandwidth also impact the optimal modified tracking performance of the NCSs. The optimal modified tracking performance with channel input power constraint is obtained by searching through all stabilizing two-parameter compensator. Finally, some typical examples are given to illustrate the effectiveness of the theoretical results.  相似文献   

9.
10.
This paper is concerned with the event-triggered static output feedback control of networked control systems. The event-triggered mechanism is represented by a time-delay model and some latest techniques are employed to deal with the induced time-delay. Furthermore, a novel strategy is developed to eliminate the coupling among control gain, input matrix and output matrix. With these techniques, a new sufficient condition for system stability is established in the framework of linear matrix inequalities. The effectiveness of the proposed method is shown by two numerical examples.  相似文献   

11.
This paper investigates the off-line synthesis approach of model predictive control (MPC) for a class of networked control systems (NCSs) with network-induced delays. A new augmented model which can be readily applied to time-varying control law, is proposed to describe the NCS where bounded deterministic network-induced delays may occur in both sensor to controller (S–A) and controller to actuator (C–A) links. Based on this augmented model, a sufficient condition of the closed-loop stability is derived by applying the Lyapunov method. The off-line synthesis approach of model predictive control is addressed using the stability results of the system, which explicitly considers the satisfaction of input and state constraints. Numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

12.
This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

13.
The optimal tracking performance of multiple-input multiple-output (MIMO) discrete-time networked control systems with bandwidth and coding constraints is studied in this paper. The optimal tracking performance of networked control system is obtained by using spectral factorization technique and partial fraction. The obtained results demonstrate that the optimal performance is influenced by the directions and locations of the nonminimum phase zeros and unstable poles of the given plant. In addition to that, the characters of the reference signal, encoding, the bandwidth and additive white Gaussian noise (AWGN) of the communication channel are also closely influenced by the optimal tracking performance. Some typical examples are given to illustrate the theoretical results.  相似文献   

14.
In this work, a robust control methodology is presented for saturating systems with packet dropouts under distributed model predictive control framework. The sequence of time instants when data dropout happens is modeled by a Markov chain. A packet dropout compensation strategy and an augmented Markov jump linear model are considered simultaneously. To design distributed model predictive controllers, the entire system is decomposed into coupled subsystems. Considering the influences of neighbor subsystems, a distributed predictive control synthesis involving packet dropouts and Markovian probabilities is developed by minimizing the worst-case performance index at each time instant. The input saturation constraints are also incorporated into the robust controller design under distributed model predictive control framework. Furthermore, both the recursive feasibility of the proposed robust control under distributed model predictive control and the closed-loop mean-square stability are proved. To show the effectiveness, the proposed methodology is validated by simulations on a continuous stirred tank reactor process and a DC control system.  相似文献   

15.
A networked control system (NCS) is a control system which involves a communication network. In NCSs, the continuous-time measurement is usually sampled and quantized before transmission. Then, the measurement is transmitted to the remote controller via the communication channel, during which the signal may be delayed, lost or even sometimes not allowed for transmission due to the communication or energy constraints. In recent years, the modeling, analysis and synthesis of networked control systems (NCSs) have received great attention, which leads to a large number of publications. This paper attempts to present an overview of recent advances and unify them in a framework of network-induced issues such as signal sampling, data quantization, communication delay, packet dropouts, medium access constraints, channel fading and power constraint, and present respective solution approaches to each of these issues. We draw some conclusions and highlight future research directions in end.  相似文献   

16.
This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays.  相似文献   

17.
This paper investigates stability analysis and stabilization for networked control systems. By a refined delay decomposition approach, slightly different Lyapunov–Krasovskii functionals (LKFs) with quadruple-integral terms and augmented vectors containing triple-integral forms of state are constructed. New integral inequalities are proposed to estimate the cross terms from derivatives of the LKFs, which can be proved to offer tighter bounds than what the Jensen one produces theoretically. Moreover, the non-strictly proper rational functions in deriving process are fully handled via reciprocally convex approach. A state feedback controller design approach is also developed. Numerical examples and applications to practical power and oscillator systems demonstrate the superiority of the proposed criteria in conservatism reduction compared to some existing ones.  相似文献   

18.
This paper investigates the parallel-triggered static output feedback stabilization problem for linear networked control systems. A new parallel-triggered scheme is proposed by using both the relative error and the absolute error information. The scheme can reduce transmission rate while maintaining the global asymptotical stability. The linear parallel-triggered networked control system is modeled as a time-delay system. By employing Lyapunov stability theory, sufficient conditions are established for the closed-loop system to be globally asymptotically stable in terms of linear matrix inequalities. Moreover, a co-design algorithm is developed to obtain both the optimal trigger parameters and the output feedback controller gain in the sense that the transmission rate is minimized. Finally, two examples are given to illustrate the advantages of the proposed scheme.  相似文献   

19.
基于协同论的网络测控系统协同机制分析   总被引:1,自引:1,他引:0  
基于协同论引进协同理念,将其应用于网络测控系统中,具体分析基于IP模式的网络测控系统协同机制,提出实现协同机制的一些思路和方法。  相似文献   

20.
基于时间窗口的网络控制系统调度算法   总被引:4,自引:0,他引:4  
由于网络控制系统中各个控制设备共享物理传输介质,造成了控制设备争用总线的问题,从而引起了控制数据传输的延时,而反馈控制系统的稳定性能由环延时决定,需要研究一种调度算法对网络中消息的传输进行调度,使消息可以满足其实时性要求。该调度算法从控制系统稳定性能角度出发,利用控制环的最大允许环延时确定控制环的采样周期,同时基于时间窗口得出控制环中各个节点的起始传输时刻,最终确定了系统静态调度表的结构。最后分析了该调度算法在CAN总线应用中需解决的问题以及未来的研究工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号