首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructure of cement paste of 50/50 mixes of cement/quartz and cement/fly ash, both ground in a special mill [energetically modified cement (EMC) process] and simply blended, have been studied under sealed curing conditions. The grinding process reduced the size of both cement grains and quartz/fly ash markedly and created flaky agglomerates of high inner surface for the finer particles. EMCs had much higher degree of hydration at 1 day, but similar as blends at 28 days. The pores were much finer for EMC paste due to smaller particles as also reflected in the strength. The morphology of calcium hydroxide in EMC paste appeared more mass like. Pozzolanic reaction was insignificant for quartz in EMC, but increased for fly ash. Thus, improved performance of EMC versus OPC can be explained by increased early hydration and extensive pore size refinement of the hardened binder resulting in reduced permeability and diffusivity for concrete.  相似文献   

2.
采用SEM、XRD研究了玻璃粉水泥浆的初期水化产物、浆体结构.并用化学结合水量和有效结合水法来定性和定量分析玻璃粉对水化初期复合体系及水泥的促进或抑制作用以及作用程度.研究表明:在水化反应初期(1d内),因为玻璃粉的掺入既由此而产生的稀释作用使有效水灰比增加而产生的对水泥熟料水化的促进作用,因此,硅酸盐水泥熟料的水化程度较高,但从整体来看,大掺量(50%)的玻璃粉延缓了复合胶凝材料总水化程度;水化开始(6 h~1 d)时,水化反应开始加速进行,水化产物的数量迅速增加,主要为纤维状CSH凝胶、针棒状钙矾石晶体和Ca(OH)2,这些水化产物彼此间相互搭接、交错生长,部分未水化的水泥颗粒镶嵌其中,并将玻璃粉粘结成整体,构成体系骨架.  相似文献   

3.
In this study, a new method to assess early properties of cementitious materials by water-solvent replacement is investigated. Isopropanol was used to replace a part of mixing water of binder paste, limiting the maximum degree of hydration it can achieve. Results of four independent methods (calorimetry, thermo-gravimetric analysis, back-scattered electron imaging and mechanical strength) confirmed that the hydration reactions of the cement have been effectively delayed and suppressed due to the presence of isopropanol. A set of curves is obtained to identify the appropriate combination of i) the extent of water–isopropanol replacement and ii) time for achieving the targeted degree of hydration. This allows assessing material properties at low and/or desired degree of hydration with less time limitation during sample manipulation, achieving a better preserved and homogeneous microstructure. It has however to be noted that this method has limits with respect to direct moisture-transport related studies.  相似文献   

4.
Morphological features of hydrated portland cement paste exhibited on carefully polished surfaces have been critically examined using backscatter mode scanning electron microscopy. A new interpretation and classification of such features is proposed. The microstructure is seen to consist of distinct grains of the order of 10 μm and larger ("phenograins") set in a cellular groundmass of smaller particles and pores. Most of the phenograins are dense pseudomorphs of the larger cement grains, but some are large calcium hydroxide crystals, and in some cements a few may represent inert filler grains added to the cement. The phenograins that are pseudomorphs of cement particles may be solid, gapped, or hollow; and, at a given age, various stages of hydration are represented in different grains. While many pseudomorph phenograins consist of a simple core of unhydrated material surrounded by a uniform shell of hydration product, more complex and irregular structures are also found. Relationships between these features and earlier classifications of cement hydration product particles are discussed, and implications with respect to difficulties in image analysis of hardened cement paste are examined.  相似文献   

5.
A rheological technique (creep/recovery) was used, in combination with scanning electron microscopy, to study the effects of hydration on both the microstructure and flow properties of fresh cement paste during the induction period, which is the first few hours after cement and water are mixed. The principal hydration product was calcium silicate hydrate (C-S-H), which was first observed in the neck areas between cement particles. At the same time, yield stress increased progressively, which reflected a strengthening of bonds between particles attributed to the C-S-H. Failure strain also increased, which reflected a fundamental change in the nature of that bond. Based on rheological measurements, the activation energy of the hydration process during this time period was estimated to be 5.2 kcal/mol (˜22 kJ/mol).  相似文献   

6.
Powers’ model is a simple approach for estimating the relative volumes of hydration products, porosity, and chemical shrinkage present in portland cement paste as a function of its starting water‐to‐cement ratio (w/c) and current degree of hydration. It forms an important link between cement composition, microstructure, and performance, necessary for modeling cement‐based systems. Previous researchers have adapted Powers’ model for inert fillers to illustrate their effects on the hydration, porosity, and chemical shrinkage of blended cements; however, it is well‐documented that limestone is not, in fact, an inert filler, but rather participates in cement hydration through both chemical and physical processes. This research experimentally investigates the applicability of Powers’ model to modern portland cements containing up to 15% by mass finely divided limestone. The results demonstrate that the modified Powers’ model is insufficient for predicting the influence of finely divided limestone additions on the chemical shrinkage of both ordinary portland cement pastes and portland limestone cement pastes. Possible explanations for the discrepancy are discussed and a plausible source is proposed.  相似文献   

7.
利用X射线衍射、扫描电镜及力学性能测试等手段研究了纳米SiO2对玻璃粉水泥体系水化硬化的影响,结果表明:纳米SiO2促进了水泥早期溶解,提高了复合体系碱度,有利于玻璃粉内部高能键(Si-O,Al-O)断裂,从而提高复合体系中玻璃粉早期水化程度;纳米SiO2对材料凝结硬化的促进作用较大程度上缓解了掺玻璃粉体系早期性能发展不足的缺陷;纳米SiO2的微集料效应,改善了玻璃粉水泥浆的微观结构,使得硬化浆体更为密实;纳米SiO2的促凝作用可显著缩短复合体系凝结时间,大幅度提高其早期强度,但掺纳米SiO2的复合胶凝材料强度存在一个极值,而5%纳米SiO2为其最佳掺入量.  相似文献   

8.
高温地热井水泥水化硬化的研究   总被引:5,自引:2,他引:5  
丁树修 《硅酸盐学报》1996,24(4):389-399
研究了由不同配比的高抗硫G级水泥与石英砂粉组成的高温地热井水泥在不同水热条件下的强度性能及其水化硬化过程,阐明了高温下硬化浆体水化产物的组成,形态,再结晶和水泥石显微结构及孔径分布是制约水泥石强度行为的有重要因素,为进一步改善和提高我国地热井水泥产品质量和耐热性能提供了理论依据。  相似文献   

9.
Elastic properties of hydrating cement paste can be successfully predicted by combination of the hydration model, percolation theory and micromechanical analysis. Reconstruction of hydrating microstructure is based on the 3D digital NIST model of cement hydration, which is enhanced for the prediction of two C-S-H types. Chemical phases in a percolated microstructure served as an input in a two-level analytical or one-level 3D FEM or FFT elastic homogenization. Special mesh generation for the percolated microstructure is discussed as well as its numerical implementation. Good results from FEM and FFT were found for the size of the representative volume element of 50 × 50 × 50 μm, considering water-to-cement ratio in the range from 0.25 to 0.5. While good predictions in well-hydrated cement pastes were obtained for both analytical and numerical approaches, numerical homogenization was found more accurate and versatile for the whole hydration time.  相似文献   

10.
冯竟竟  阎培渝 《硅酸盐学报》2012,40(5):671-672,673,674,675,676
研究了硫酸对油井水泥石强度及微观结构的影响。结果表明:水泥石被硫酸腐蚀后,强度明显下降,硬化浆体中100 nm以上有害孔的数量显著增多,水化产物变得疏松多孔,硬化水泥浆体的物相组成发生变化,有新的腐蚀产物CaSO4·2H2O生成;水泥石抵抗酸性介质腐蚀的能力不仅与其致密程度有关,还与其硬化浆体的矿物组成密切相关;不同水化产物抵抗腐蚀的能力不同,Ca(OH)2比C-S-H凝胶更容易受到酸性介质的腐蚀;C-S-H凝胶被腐蚀后产生的孔隙主要是细小孔隙,而Ca(OH)2被腐蚀后产生的孔隙主要是100 nm以上有害孔,降低硬化浆体中Ca(OH)2的含量是提高水泥石抗腐蚀性能的关键。  相似文献   

11.
The effects of adding sugar to cement paste on hydration and microstructure were observed. While 1% sugar delayed hydration as expected, the delay period was shortened by increased curing temperature. When samples containing sugar began to react, hydration progressed very quickly and the degree of hydration soon surpassed that of control samples. Sugar addition increased the surface area and altered the pore size distribution, as measured by nitrogen, of cement pastes. Results indicate that sugar not only alters the rate of cement paste hydration, but the microstructure of calcium-silicate-hydrate (C-S-H) as well.  相似文献   

12.
This paper investigates the ability of a shear wave reflection (WR) method to monitor microstructural changes of Portland cement mortar during hydration. The wave reflection method measures the reflection loss of shear waves at an interface between a steel plate and mortar. Mortars with water/cement ratios of 0.35, 0.5 and 0.6 were tested at isothermal curing conditions of 25 °C. The numerical model HYMOSTRUC3D was used to simulate the evolution of microstructural properties of the cement paste phase of the tested mortars. The parameters obtained from the simulations were the volume fraction of the total and connected solid phase and the specific contact area of the hydrated cement particles. The investigations have shown that the wave reflection measurements are governed primarily by the degree of the inter-particle bonding of the cement particles as calculated from the specific contact area of a simulated microstructure.  相似文献   

13.
The rheological properties of cement paste strongly influence the workability of concrete. It is known that early hydration processes alter phase composition and microstructure of cement pastes. These processes affect fluidity and setting behaviour of cement paste. While many studies tried to measure and model rheological properties of cement pastes, only a few studies assessed the influence of the hydrate morphology on the fluidity of cement pastes.Results of the present study compare the influence of long prismatic hydrates (i.e. syngenite, secondary gypsum) on the fluidity of cement pastes with the effect of other hydrates (AFm).To induce the formation of certain hydration products the cement composition was modified by addition of set regulators and alkali sulphates. Furthermore a combination of various analytical methods such as fluidity (viscometric) testing and microstructural analysis (phase quantification by XRD-Rietveld analysis, investigation by Environmental SEM, BET analysis etc.) was performed. Results are implemented into a fundamental discussion on the influence of various hydration products on the fluidity of the paste.  相似文献   

14.
In this study, the influence of the admixed micelles (poly(ethylene oxide)-block-polystyrene micelles) on the microstructure and hydration rate of cement paste and more global performance of mortar were investigated. In cement paste, the cement hydration rate was only slightly influenced by the admixed micelles; on the other hand, the micelles lead to a reduced porosity and a denser matrix. The nano indentation combined with MIP and microstrutural analyses proves that the admixed micelles lead to a more uniform distribution of hydration products. In mortar, the compressive strength of the micelle-containing mortar was almost unaffected; the coefficient of water permeability was 3 orders of magnitude lower for the micelle-containing specimens, compared to the control (micelle-free) specimens. All experimental results indicate that the micelles act as nucleation sites for the formation of new hydration products and possibly induce defloculation of un-hydrated cement particles, resulting in a more uniform and homogeneous cement matrix.  相似文献   

15.
Recent work on the strength-enhancing mechanism of triisopropanolamine (TIPA) suggested that TIPA enhances the mechanical properties of mortar and concrete by acting on the interfacial transition zone (ITZ) between paste and sand or aggregate rather than improving the properties of the hydrated binder. This paper presents compressive strength data for 10 Portland cements tested as cement paste as well as two different kinds of mortar after 28 days hydration, so that these two mechanisms could be compared directly. The average strength improvement with TIPA was 10% in the hydrated portland cement paste and 9% in the mortar, clearly showing that the strength enhancement is not dependent on an ITZ mechanism.  相似文献   

16.
水泥浆体初凝时间预测的数值方法及其影响因素评价   总被引:1,自引:0,他引:1  
提出了水泥浆体初凝时间预测的数值方法并定量评价了影响初凝时间的因素.通过引入周期性边界条件,描述了水泥颗粒初始分布和水化的计算机模拟技术.基于模拟的水泥浆体微观结构,给出了初凝时间算法并讨论了模拟次数对初凝时间的影响.通过与实验数据的比较,验证了该数值方法的有效性.定量评价了水灰比、水化温度、最小和最大水泥颗粒直径对初凝时间的影响.结果表明:水灰比和最大水泥颗粒直径是影响初凝时间的2个主要因素.  相似文献   

17.
在模拟井下环境中堵剂的结构形成与失效机理   总被引:3,自引:0,他引:3  
采用XRD,TG和SEM-EDS等研究了在模拟油井深处温度,压力条件下养护的G级油井水泥和YLD型堵漏剂浆体的水化产物和显微结构。在高温高压动态养护条件下,硬化水泥浆体内部存在大量CSH凝胶和Ca(OH2)晶体,而堵漏剂浆体的主要水化产物是CSH凝胶。在钢管-浆体界面,虽然水化程度更高,但CSH凝胶和Ca(OH)2晶体的量却很少;主要的水化产物是钙矾石和水化钙黄长石。界面处的显微结构也比浆体内部疏松。这表明在钢管-浆体界面处存在严重的溶蚀现象,导致水泥浆体很快损失胶凝性,这可能是水泥基堵剂失效的主要原因。堵漏剂浆体的溶蚀速率小于油井水泥浆体,其溶蚀表面可发生再水化过程,新生成的CSH凝胶具有修补受损界面的“自愈”作用,使堵漏剂浆体与钢管的粘结作用得以维持,从而延长堵漏剂的有效使用期。  相似文献   

18.
The formation of microstructure in early age cement paste and concrete was examined with an ultrasonic experimental set-up. Research parameters included the influence of curing temperature (isothermal curing at 20, 30 and 40 °C), water/cement ratio (0.40, 0.45 and 0.55) and amount of aggregate. In parallel with the experiments, the cement hydration model HYMOSTRUC was utilized to simulate the formation of the microstructure. In this study, the cement paste was considered as a four-phase system consisting of water, unhydrated cement, hydration products and that part of the hydration product that causes the contact between the hydrating cement grains (so called “bridge volume”). A correlation has been found between the growth of bridge volume calculated with the model and the changes in the pulse velocity. It is believed that ultrasonic pulse velocity (UPV) measurements can represent a valuable tool to investigate the development of the microstructure at early age.  相似文献   

19.
This work is the second part of an overall project, the aim of which is the development of general mix design rules for concrete containing different kinds of mineral admixtures. The first part presented the separation of the different physical effects responsible for changes in cement hydration when chemically inert quartz powders are used in mortars. This second part describes the development of an empirical model, based on semiadiabatic calorimetry measurements, which leads to the quantification of the enhancement of cement hydration due to the heterogeneous nucleation effect at short hydration times. Experimental results show that not all the admixture particles participate in the heterogeneous nucleation process. Consequently, the concept of efficient surface Seff is introduced in the model. Seff is the total admixture surface S (m2 of mineral admixture/kg of cement) weighted by a function ξ(p). The efficiency function ξ(p) depends only on the replacement rate p and is independent of time, fineness and type of mineral admixture used. It decreases from 1 to 0: Low replacement rates give an efficiency value near 1, which means that all admixture particles enhance the hydration process. An efficiency value near 0 is obtained for high replacement rates, which indicates that, from the hydration point of view, an excess of inert powder does not lead to an increase in the amount of hydrates compared with the reference mortar without mineral admixture. The empirical model, which is mainly related to the specific surface area of the admixtures, quantifies the variation of the degree of hydration induced by the use of inert mineral admixtures. One application of the model, coupled with Powers' law, is the prediction of the short-term compressive strength of mortars.  相似文献   

20.
The relationship between material components and mechanical properties was studied in terms of composite material principles and orthogonal experimental design. Moreover, the microstructure of microfine high-performance composite cementitious material (MHPCC) paste was investigated by means of scanning electron microscopy (SEM) methods. The results showed that the composite material consisting of blast furnace slag (BFS), gypsum (G2) and expansive agent (EA) could obviously improve the strength of the cementitious material containing 40% fly ash (FA). Although microfine cement (MC) was merely 45% percent of the MHPCC, the compressive strength of MHPCC paste was higher than that of neat MC paste. BFS played an important role in MHPCC. The optimum-added quantity of BFS was 15%. The needle-shaped ettringite obtained from the EA reacting with Ca(OH)2 forms a three-dimensional network structure, which not only improved the early strength of MHPCC paste but also increased its late strength. The reason was that the network structure, which was similar to a fiber-reinforced composite, was formed in the late period of hydration with the progress of hydration and the deposition of hydration products into the network structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号