首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用粉末冶金法+热压工艺制备了不同Al2O3颗粒直径的1 vol%Al2O3/Cu基复合材料,使用光学显微镜和扫描电镜(SEM)观察了复合材料的显微组织,利用电子拉伸试验机测试了复合材料的力学性能。基于弹/塑性理论推导出了复合材料中颗粒周边的弹性区宽度的表达式。结果表明:Al2O3颗粒直径对Al2O3/Cu基复合材料强度及基体晶粒尺寸有着较大的影响;Al2O3颗粒直径越大,Al2O3/Cu基复合材料的抗拉强度、屈服强度越小;当Al2O3颗粒直径为5μm时,Al2O3/Cu基复合材料的抗拉强度和屈服强度分别为207和90 MPa,是铜试样的95.8%和95.7%。  相似文献   

2.
以Al-K2TiF6为反应体系,体育器材用ADC12铝合金为基体,通过电磁搅拌技术制备了Sr变质Al3Ti/ADC12铝基复合材料,研究了制备工艺和工艺参数对铝基复合材料的微观组织和力学性能的影响。结果表明,电磁搅拌和Sr变质处理均对Al3Ti/ADC12铝基复合材料微观组织起到了细化作用,α-Al细化为球状晶,Al3Ti尺寸减小到10μm,团聚现象得到改善,鱼骨状AlFeMnSi相消失,共晶Si由长针状细化为短棒状。随着搅拌电流的增大,α-Al尺寸减小,形貌越圆整。当搅拌电流为35 A时,α-Al尺寸最小,形貌最圆整,孔隙率最小,抗拉强度和伸长率最大,相比于ADC12铝合金基体分别提升了24.1%和22.1%。电磁搅拌和Sr变质对铝基复合材料起到了弥散强化和细晶强化的作用。  相似文献   

3.
《铸造》2019,(7)
采用氟盐反应法制备了原位自生5vol.%TiB_2/2014Al复合材料,研究了原位自生复合材料挤压铸造成形工艺,以及挤压铸造对复合材料组织和性能的影响。结果表明:挤压铸造能够制备合格的TiB_2/2014复合材料薄壁铸件;相比2014 Al基体合金,复合材料表现出较差的挤压铸造成形性;挤压铸造可减少铸造缺陷,细化基体组织,显著改善原位自生TiB_2颗粒的分散性;与重力铸件相比,复合材料挤压铸件的力学性能显著提高。  相似文献   

4.
利用超声铸造法制备了原位Al_3Ti颗粒增强的Al_3Ti/2024Al复合材料,研究了Al_3Ti含量对Al_3Ti/2024Al复合材料微观组织、硬度、力学性能和耐磨性的影响。结果表明,随着Al_3Ti含量增加,复合材料基体组织逐渐细化;但当Al_3Ti含量超过12%时,复合材料致密度却显著降低;基体硬度和复合材料硬度都随Al_3Ti含量增加而增大;Al_3Ti含量为8%的2024Al复合材料的屈服强度和抗拉强度分别为357 MPa和446 MPa,相比铸态2024Al合金提升了38.5%和39.8%;复合材料的耐磨性随Al_3Ti含量增加而逐渐提高。  相似文献   

5.
超声化学原位合成ZrB2/A356复合材料的微观组织和力学性能   总被引:1,自引:0,他引:1  
采用熔体反应法,以A356-K2ZrF6-KBF4为反应体系,超声化学原位合成了ZrB2/A356复合材料.利用X射线衍射与扫描电镜对该复合材料的微观组织和力学性能进行了研究.结果表明,生成的颗粒为ZrB2,颗粒细小,平均粒径尺寸小于1 μm,部分颗粒尺寸小于0.1μm,且形状一致,并弥散分布于A356基体中.复合材料的抗拉强度和伸长率较未施加高能超声的复合材料分别提高了18.16%和12%.室温拉伸断口形貌呈现明显的韧窝断裂特征,为韧性断裂.高能超声能显著地促进A356-K2ZrF6-KBF4体系的原位化学反应的进程,增加了内生颗粒的形核率,提高了颗粒体积分数,细化了晶粒,且反应过程平稳,内生颗粒弥散分布在基体中.  相似文献   

6.
以TC4箔材和纯Al箔材为原材料,用高真空热压法制备了TC4/Al3Ti微叠层复合材料,研究了组元层厚对复合材料组织与性能的影响。使用金相显微镜、X射线衍射仪、扫描电镜和场发射电子探针对复合材料的显微组织、裂纹断口进行分析。结果表明,当试样厚度及试样内Al3Ti体积分数一定时,组元层厚越小,复合材料力学性能越优异。当堆叠层数为55层时,组元层厚最小,材料性能最佳,其抗弯强度为970 MPa,垂直于层的抗压强度为1 307 MPa,平行于层的抗压强度为1 206 MPa。  相似文献   

7.
在A356铝合金中同时引入原位纳米颗粒(TiB2+ZrB2)和元素Sb,通过纳米颗粒对基体的强化和Sb提高颗粒分散性所产生的协同作用来提高材料的力学性能。结果表明,单独引入(TiB2+ZrB2)颗粒会细化α-Al基体,减小二次枝晶臂间距,但复合材料内部存在严重团聚现象,不利于性能的提高。在此基础上引入Sb,降低纳米颗粒与Al基体间的界面能,纳米颗粒的团聚现象得到显著改善。原位纳米(TiB2+ZrB2)颗粒和Sb的协同引入使复合材料的强度和塑性较A356基体大幅提高,当(TiB2+ZrB2)和Sb的引入量分别为3%和0.6%(质量分数)时,铸态复合材料的抗拉强度、屈服强度和伸长率分别达到216.4 MPa、119.7 MPa和7.2%,相较A356基体的性能分别提高29.7%、23.5%、84.6%。  相似文献   

8.
原位合成Al2O3颗粒增强双相TiAl基复合材料的组织与性能   总被引:2,自引:1,他引:2  
以Ti-Al-TiO2反应体系为基础,添加不同含量的Nb2O5粉,采用压力协助原位合成Al2O3颗粒增强的双相TiAl基复合材料,对复合材料的组织和力学性能进行了分析讨论,并探讨了其增韧机制。结果表明:Nb2O5的掺杂使复合材料的相对密度和硬度得到提高,抗弯强度和断裂韧性在Nb2O5掺杂量为6%(质量分数)时达到最大,分别为398.38 MPa和6.992 MPa.m1/2。微观组织分析表明,获得了双相组织,Al2O3颗粒分布于基体晶界处;随Nb2O5的掺杂量增大,Al2O3颗粒呈细小弥散分布,同时基体晶粒尺寸也减小。双相基体晶粒的细化及Al2O3颗粒的弥散分布是赋予材料高韧性的主要增韧机制。  相似文献   

9.
以细雾化铝粉和TiB2颗粒为原料,通过粉末冶金和热轧制制备微米TiB2和纳米Al2O3颗粒增强铝基复合材料。室温时,由于TiB2和Al2O3的综合强化作用,Al2O3/TiB2/Al复合材料的屈服强度和抗拉强度分别为258.7 MPa和279.3 MPa,测试温度升至350℃时,TiB2颗粒的增强效果显著减弱,原位纳米Al2O3颗粒与位错的交互作用使得复合材料的屈服强度和抗拉强度达到98.2MPa和122.5 MPa。经350℃退火1000 h后,由于纳米Al2O3对晶界的钉扎作用抑制晶粒长大,强度和硬度未发生显著的降低。  相似文献   

10.
采用K2TiF6和KBF4混合盐原位反应法制备TiB2/7055复合材料,研究了稀土对复合材料铸态组织和力学性能的影响。结果表明:添加0.3%稀土可以显著细化复合材料的铸态组织,晶粒尺寸从200μm减小到40μm左右。同时,TiB2颗粒得到细化,其平均尺寸约为100 nm;TiB2颗粒在基体上的分布也更加均匀。经过480℃固溶60 min、120℃时效24 h后复合材料抗拉强度达到690 MPa,伸长率达到5.5%。  相似文献   

11.
采用熔体反应法,并在反应过程中施加高能超声,合成了(Al2O3 Al3Zr)p/A356复合材料.XRD和SEM分析表明,生成的增强颗粒为Al203和Al3Zr;颗粒尺寸细小,平均粒径尺寸为1μm,在基体中均匀分布;共晶Si在高能超声作用下显著细化,变短并呈粒状.研究表明,经过高能超声处理后,其抗拉强度比未加高能超声处理的复合材料提高了近20%,达到了381.4MPa.  相似文献   

12.
采用热挤压法制备了双尺寸Al_2O_3颗粒增强AZ31镁基复合材料,利用光学显微镜(OM)、扫描电镜(SEM)、维氏硬度仪和电子万能拉伸试验机等研究了Al_2O_3/AZ31镁基复合材料的组织和力学性能。结果表明:经过热挤压后,双尺寸Al_2O_3颗粒均匀地分布在AZ31基体中,通过纳米颗粒对基体位错运动的钉扎作用和微米颗粒对晶粒长大的抑制作用,使复合材料的晶粒被显著细化。相比于单一尺寸,当添加双尺寸Al_2O_3颗粒时,复合材料的力学性能达到最大值,其硬度、抗拉强度和伸长率分别为85 HV、295 MPa和6.8%。  相似文献   

13.
本文通过原位合成技术,成功制备了纳米ZrB2颗粒增强7085铝合金基复合材料。采用金相显微镜、扫描电子显微镜、透射电子显微镜、X射线衍射仪进行表征,并进行力学性能测试,研究了ZrB2纳米增强体对7085铝合金的显微组织和力学性能的影响。结果表明,ZrB2纳米增强体可以显著提高7085铝合金的强度。但是随着增强体体积分数增大,ZrB2颗粒团聚现象加剧,不利于复合材料的塑韧性提高。同时,在复合材料中引入微量稀土元素Sc可使纳米ZrB2颗粒团聚现象得到改善,并进一步细化基体晶粒,使复合材料的强度和延长率都得到提高。当ZrB2含量为2%(体积分数)、Sc含量为0.4%(质量分数)时,复合材料的抗拉强度为534 MPa、伸长率为10.2%,相较于7085铝合金基体分别提高了17.4%、14.6%。  相似文献   

14.
采用混合盐法制备了TiB_2/Al-7Si复合材料,对复合材料的微观组织进行了观察,并对其力学性能进行了测试.结果表明:原位生成的TiB_2颗粒平均尺寸约400nm,在复合材料中分布均匀;TiB_2颗粒对α-Al和共晶Si都具有显著的细化效果;复合材料的力学性能较其基体有明显的提高;基体晶粒的细化及TiB_2颗粒的弥散分布是复合材料的主要强化机制.  相似文献   

15.
通过原位反应法制备了增强相含量为3%(质量分数,下同)的Al3Zr/A356铝基复合材料(AMCs)。通过X射线衍射仪、扫描电子显微镜、能谱仪和显微硬度测试,研究了不同钨极氩弧(TIG)焊焊接参数下焊接接头的显微组织和耐腐蚀性能。结果表明,当焊接电流为140 A时,焊缝成形最好,没有气孔或裂纹等焊接缺陷。焊接过程中生成细小的Al3Ti增强颗粒,呈球形和短棒状,并分散在基体中。焊接接头的硬度高于基体金属的硬度,增强颗粒的强化效果明显。随着在3.5%NaCl溶液中的浸泡时间延长,焊缝的点蚀程度增加,且大多发生在晶界和强化相周围。微区电化学实验结果表明,当焊接电流为140 A时,腐蚀电位波动小,腐蚀倾向低,耐腐蚀性能最好。  相似文献   

16.
采用原位自生的方法成功制备了TiB_2/A356复合材料,研究了不同TiB_2颗粒含量对TiB_2/A356复合材料组织及力学性能的影响。结果表明,TiB_2颗粒的尺寸为150~560nm时对复合材料有显著地细化、抑制枝晶长大的作用。随着TiB_2颗粒含量的增加,复合材料的强度随之升高而伸长率降低。复合材料的屈服强度为242~265 MPa,抗拉强度为270~297 MPa,伸长率为4.2%~5.8%。  相似文献   

17.
为探究微量元素复合添加对Al-Si合金晶粒大小、形貌和力学性能的影响,熔炼制备了Al-8Si-0.6Mn-0.4Mg-0.15Ti-x Sc(x=0,0.2,0.4,0.5,质量分数,%,下同)合金,结合金相组织图、扫描电镜和能谱等技术手段对合金的晶粒形貌、尺寸及强韧性进行表征分析。结果表明,铸态Al-8Si-0.6Mn-0.4Mg-0.15Ti-x Sc合金的主要物相包括:α-Al基体、共晶Si相、Al3Ti、Al3Sc、AlMnTi、富Fe相等。Ti含量为0.15%的情况下,调整Sc含量为0.2%,可以获得最优的细化效果,合金平均晶粒尺寸为46μm,抗拉强度达到221 MPa,伸长率为5.9%。  相似文献   

18.
利用球磨预分散-搅拌铸造法制备纳米Al2O3/2024复合材料,并对所制备的铝基复合材料进行了显微组织及力学性能的研究。结果表明,经球磨预分散后,纳米颗粒团聚现象明显消除,纳米Al2O3呈单颗粒分散于Al粉表面;复合粉体添加法有效避免了超细增强颗粒和基体润湿性差和分散性较差的问题,实现纳米Al2O3颗粒均匀弥散分布于基体合金中;纳米Al2O3颗粒的加入显著提高基体合金的力学性能。与传统搅拌铸造相比,所制备的Al2O3/2024复合材料的抗拉强度、屈服强度和显微硬度分别提高了58%、59%和16%。  相似文献   

19.
采用原位反应法制备铝基复合材料,研究基体的合成机理,增强颗粒与基体的强化原理,铝合金热处理工艺的选择等。结果表明,当采用原位反应Al2O3颗粒增强Al-Cu基复合材料时,复合材料的晶粒可被细化。同时,采用固溶、时效处理可提高铝合金的力学性能。  相似文献   

20.
原位合成TiC颗粒弥散强化2A50铝基耐磨材料   总被引:2,自引:1,他引:1  
采用原位合成的方法制备30wt%TiC/Al中间合金.再以2A50铝合金为基体,通过搅拌铸造法加入一定量的中间合金制备TiC颗粒弥散强化2A50铝基耐磨材料.采用XRD和SEM研究了中间合金的显微组织和相组成以及TiC颗粒的加入对基体的组织及力学性能的影响.结果表明:TiC为原位合成反应的唯一生成产物,且颗粒细小分布均匀,TiC颗粒的加入能够细化基体的晶粒,显著提高基体合金的力学性能,尤其是耐磨损性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号